BL-5A/2008G089/2010G523

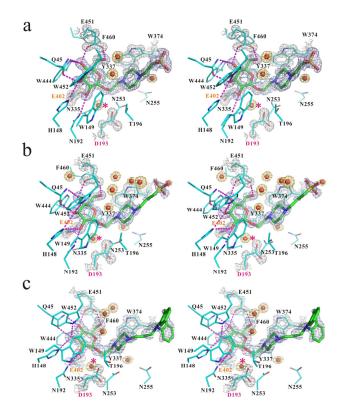
High-resolution structures of *Neotermes koshunensis* β-glucosidase mutants provide insights into the catalytic mechanism and the synthesis of glucoconjugates

Wen-Yih Jeng^{1,2,3}, Nai-Chen Wang^{1,2}, Cheng-Tse Lin^{1,2}, Wei-Jung Chang^{1,2}, Chia-I Liu^{1,2}, and Andrew H.-J. Wang^{1,2,*}

¹Institute of Biological Chemistry, ²Core Facility for Protein Production and X-ray Structural Analysis, Academia Sinica, Taipei 115, Taiwan, and ³University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan

1 Introduction

 β -Glucosidases, a heterogeneous group of exo-type glycosyl hydrolases, have been widely used in numerous applications. β -Glucosidases normally catalyze the hydrolysis of glucosidic linkages in disaccharide or glucose-substituted molecules, but transglycosylation under conditions that favour a back reaction can be applied to promote the synthesis of oligosaccharides. *Nk*Bgl, a β -retaining glycoside hydrolase family 1 β -glucosidase (EC 3.2.1.21), was isolated and identified from the salivary glands of the termite *Neotermes koshunensis*.


2 Experiment

The protein was prepared at 25 mg/ml in 50 mM HEPES buffer pH 8.0 containing 100 mM NaCl and 5 mM DTT for crystallization. Crystals were grown from a drop composed of 1.5 μ l protein solution and 1.5 μ l reservoir solution consisting of 18–21% (w/v) PEG 3350 and 0.1–0.25 M MgCl₂ in 0.1 M bis-Tris buffer pH 6.5 equilibrated at 298 K against 250 μ l reservoir solution using the sitting-drop vapor-diffusion method.

3 Results and Discussion

The crystal structures of wild-type or mutated *Nk*Bgl in complex with various ligands were determined at 0.97– 1.28 Å resolution. The overall structure of *Nk*Bgl is similar to the structures of glycosyl hydrolase family 1 enzymes, exhibiting a classical (α/β)₈ TIM-barrel fold. The bell-shaped pocket of the *Nk*Bgl active site is approximately 20 Å deep and 3000 Å³ in volume and was located on connecting loops at the C-terminal end of the β -sheets of the TIM barrel.

In the wild-type *Nk*Bgl structures it was found that glucose-like glucosidase inhibitors bind to the glyconebinding pocket, allowing the buffer molecule HEPES to remain in the aglycone-binding pocket. In the crystal structures of *Nk*Bgl E193A, E193S and E193D mutants Glu193 not only acts as the catalytic acid/base but also plays an important role in controlling substrate entry and product release. Furthermore, in crystal structures of the *Nk*Bgl E193D mutant it was found that new glucoconjugates were generated by the conjugation of glucose (hydrolyzed product) and HEPES/EPPS/ opipramol (buffer components). Based on the wild-type and E193D-mutant structures of *Nk*Bgl, the glucosidic bond of cellobiose or salicin was hydrolyzed and a new bond was subsequently formed between glucose and HEPES/EPPS/opipramol to generate new glucopyranosidic products through the transglycosylation reaction in the *Nk*Bgl E193D mutant. This finding highlights an innovative way to further improve β -glucosidases for the enzymatic synthesis of oligosaccharides.

Figure. A stereoview of ligand molecules and the surrounding residues in the active sites of *Nk*Bgl structures. The *Nk*Bgl E193D mutant in complex with HEPES-1-glucoside (a), EPPS-1-glucoside (b) or opipramol-1-glucoside (c).

References

- W.-Y. Jeng et al., Acta Crystallogr D Biol Crystallogr 68, 829 (2012).
- [2] W.-Y. Jeng et al., J Struct Biol. 173, 46 (2011).

*ahjwang@gate.sinica.edu.tw