In situ SAXS measurements of structural modifications of lipidic mesophases in bacteriorhodopsin crystallization in meso

Madoka Kurematsu,1,3) Youhei Kawabata,3) Tadashi Kato2) and Masakatsu Hato,1,2,3)
1RIKEN Systems and Structural Biology Center,
2Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
3Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan.

1 Introduction

In meso membrane protein crystallization approach, where the lipid cubic or sponge phase is used as a crystallization matrix has recently been found applicable to various membrane proteins, e.g., GPCR’s, which for a long time failed to be crystallized by other crystallization approaches. However, the roles of the mesophase structures in the crystallization process remains far from being understood. Taking a bacteriorhodopsin (bR)/β-XylOC16+4 crystallization system [1] as an example, we here report an attempt to monitor changes in the mesophase structures occurring in the bR crystallization process in situ.

2 Experiment

We have employed a sandwich crystallization cell (5 mm φ, 135 μm in thickness) shield by a pair of 50 μm thick glass windows, where a 200nl of bR/β-XylOC16+4 mixture and 1 μl of crystallizing solutions (1.5, 2.3, 3.0 M Na2HPO4/KH2PO4 pH5.6) were delivered in each well. The SAXS measurements were performed at BL-4A at 20 ± 0.5 °C. Exposure time was 5 seconds at a sample to film distance of ~70 cm.

Fig. 1. Chemical structure of a matrix lipid, 1-O-(3,7,11,15-tetramethylhexadecyl)-β-D-xyloside, (β-XylOC16+4)

3 Results and Discussion

Upon addition of the crystallizing solution, the homogeneous bR/β-XylOC16+4 mixture was rapidly separated into a bR-poor peripheral region and a bR-rich central region, which eventually resulted in a crystal formation (Fig. 2).

The SAXS measurements indicated that the morphological changes are accompanied by changes in the mesophase structures (Fig. 3). Initially, the bR/β-XylOC16+4 mixture was a lamellar phase, Lα. Upon addition of the crystallizing solution, a sponge phase, L3, started to form at the expense of the Lα phase, which disappeared after 2-4 hrs. The L3 phase then gradually transformed into a Pn3m cubic phase, whose lattice constant continuously decreased with time, e.g., after 1 week, it reached about 17.5, 16, and 12 nm for 1.5M, 2.3M, and 3M of Na2HPO4/KH2PO4, respectively (Fig. 3).

Fig. 2. Morphological changes in the bR crystallization in meso {1.5M Na2HPO4/KH2PO4 pH5.6} (5 min, 3h, 4 days from left to right, and 2 weeks,

Fig. 3. Time dependent SAXS profiles observed during crystallization of bR for three different crystallization conditions. 1.5 M (a), 2.3M (b), and 3.0M (c)Na2HPO4/KH2PO4 pH5.6, respectively.

Summary
We have developed a convenient method for in situ SAXS measurements of the in meso membrane protein crystallization processes.

References

hato-m@gsc.riken.jp