Synthesis of lithium nitride for neutron production target of BNCT by in-situ lithium deposition and ion implantation

Shintaro ISHIYAMA¹, Yuji BABA^{1*}, Ryou FUJII², Masaru NAKAMURA², Yoshio IMAHORI² ¹Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195, Japan ²Cancer Intelligence Care System, Inc., Ariake 3-5-7, Koutou-ku, Tokyo 135-0063, Japan

Introduction

Many types of pilot innovative accelerator-based neutron source for Boron Neutron Capture Therapy (BNCT) were designed. As to the target materials for neutron production, two layered lithium targets were proposed [1]. However, the lithium target faces serious problems such as radiation blistering and evaporation. As to the lithium evaporation problem, we consider that it can be reduced by synthesis of Li_3N on the surface of Lilayer, because Li_3N is thermally stable up to 1086 K.

Present paper demonstrates *in-situ* Li deposition and nitridation technique to create the layered structure of lithium target for BNCT apparatus. The surface compositions and chemical states were analysed by X-ray photoelectron spectroscopy (XPS).

Experimental

Experiments were performed at the BL-27A station. Li was evaporated on Pd surface in ultrahigh vacuum by electron bombardment heating. After Li deposition, the sample surface was bombarded with nitrogen ions using a cold-cathode ion gun. The energy of the N_2^+ ions was 1.0 keV. The surface chemical states were analyzed by XPS using 2000 eV photons and X-ray tube with yttrium anode (Y M_{ζ} line, hv=132.3 eV).

Results and discussion

Fig. 1 shows the XPS spectra in the Li 1s region for lithium surface before and after N_2^+ ion bombardment. Before the bombardment, the binding energy of the Li 1s peak is 52.8 eV (marked A), which is due to the metallic Li [2]. After N_2^+ ion bombardment., the Li 1s binding energy shifted to 55.1 eV (marked B). Up to now, there have been no reliable data about the Li 1s binding energy for stoichiometric lithium nitride (Li₃N). As to the Li-N compounds, it was reported that the Li 1s binding energy of lithium azide (LiN₃) is located at 54.8 eV [3]. Although the chemical states of lithium in Li₃N is not exactly same as that in LiN₃, both compounds are formed with ionic bonds due to the high positive nature of lithium compared with nitrogen. So we tentatively assign that the peak B originates from lithium nitride.

Fig. 2 shows the XPS spectra in the N 1*s* region for lithium after N_2^+ ion bombardment. A sharp intense peak is observed at 396.0 eV (marked A). There have been no reliable data about the binding energy of the N 1*s* peak for lithium nitride. As to the metallic nitrides, many data have been reported, and it was shown that the binding

Fig.1 Li 1s XPS spectra for lithium layer before (a) and after (b) 1 keV N_2^+ ion implantation. The photon energy was 2000 eV. The fluence of the N_2^+ ions was 6.3×10^{17} atoms cm².

Fig.2 N 1s XPS spectra for lithium layer after 1 keV N_2^+ ion implantation. The photon energy was 2000 eV. The fluence of the N_2^+ ions was 6.3×10^{17} atoms cm².

energies of the N 1s in metallic nitrides are located in the range between 396 eV and 397 eV. So we assign that the peak A is due to lithium nitride. In order to estimate the stoichiometry of lithium nitride, we calculated the atomic ratio of nitrogen to lithium, n_N/n_{Li} on the basis of the XPS peak intensities. The value of n_N/n_{Li} is calculated by

$$\frac{n_N}{n_{Li}} = \frac{I_{N\,1s}/\sigma_{N\,1s}}{I_{Li\,1s}/\sigma_{Li\,1s}} \tag{1}$$

where *I* (cps) is the intensity of the photoelectrons and σ (barn) is the photoionization cross sections by 2000 eV photons for the respective core levels. From figs. 1 and 2, we obtain $n_N/n_{Li}=0.21$ using equation (1). The value is far from the ratio of lithium azide $(n_N/n_{Li}=3.0)$, but rather close to that of lithium nitride $(n_N/n_{Li}=0.33)$, so we conclude that a nearly stoichiometric Li₃N layer is formed at the surface.

References

- For example, B.F. Bayanov *et al.*, Appl. Radiat. Isot. 61, 817 (2004).
- [2] S. Ishiyama *et al.*, Nucl. Instrum. Meth. Phys. Res. B 288, 18 (2012).
- [3] C.D. Wagner *et al.*, Handbook of X-ray Photoelectron Spectroscopy, Perking-Elmer Corporation (1979).

* baba.yuji@jaea.go.jp