Anisotropic electronic structure of Ba(Fe_{0.96}Ru_{0.04})₂As₂ in the magnetostructurally ordered phase

Liang LIU^{1,*}, Masafumi HORIO¹, Leo Cristobal C AMBOLODE II¹, Hakuto SUZUKI¹, Jian Xu¹, Teppei YOSHIDA¹, Atsushi FUJIMORI¹, Kanta ONO², Masamichi NAKAJIMA³, Kunihiro KIHOU³, Chul-Ho LEE³, Akira IYO³, Hiroshi EISAKI³, Takuya MIKAMI¹, and Shinichi UCHIDA¹

¹Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

²KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan

³National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

1 Introduction

BaFe₂As₂, a typical parent compound of iron arsenide superconductors, exhibits a magneto-structural transition, below which an antiferromagnetic-orthorhombic (AFO) phase is formed. The resistivity measurement on detwinned samples has shown that the resistivity along the shorter axis with ferromagnetic spin alignment (often denoted as b axis) is higher than that along longer axis with ferromagnetic spin alignment (a axis) [1]. The inplane electronic anisotropy that develops as temperature is lowered through the transition was also successfully revealed by optical spectroscopy [2] and angle-resolved photoemission spectroscopy (ARPES) [3].

The origin of the orthorhombic transition has been discussed from the perspectives of spin fluctuations or the orbital degree of freedom (an unequal occupation of d_{zx} / d_{yz} orbitals) [4], which could result in the anisotropy of resistivity. In contrast, recent experimental results have given evidence that the resistivity anisotropy originates from an extrinsic scattering effect of impurity atoms [2,5]. In order to further understand the relationship between the anisotropy in the resistivity and that in the electronic structure, we have performed an ARPES measurement of detwinned Ba(Fe_{0.96}Ru_{0.04})₂As₂ crystals.

2 Experiment

High-quality single crystals of Ba(Fe_{0.96}Ru_{0.04})₂As₂ (T_s = 128 K) were grown using the self-flux method. In order to detwin samples in the AFO phase, we applied a uniaxial compressive stress along the tetragonal (110) direction using a mechanical device like that reported in ref. [6]. Angle-resolved photoemission (ARPES) experiments were carried out at BL 28A of Photon Factory (PF) using circularly-polarized light with the energy of 63eV. The crystals were cleaved *in situ* and measured at *T*= 20 K in an ultra-high vacuum of ~1x10⁻¹⁰ Torr.

3 Results and Discussion

Figure 1(b) shows the ARPES intensity map in the k_x - k_y plane obtained with the integration window of 10meV about E_F . One can see the anisotropy of FSs with the broken four-fold symmetry. Band dispersions along the high symmetry lines Z-X and Z-Y are shown in Fig. 1(c)-(d). The band around the X point crosses the Fermi level while the one around the Y point sinks below E_F , which is consistent with the splitting of bands with d_{zx} and d_{yz} orbital character in the AFO phase of Ba(Fe_{1-x}Co_x)₂As₂

Fig. 1: Anisotropic electronic structure observed on detwinned Ba(Fe_{0.96}Ru_{0.04})₂As₂ single crystals in the AFO phase. (a) Schematic 2D BZ in the k_x - k_y plane with k_z = π , where Z-X is along the AFM axis and Z-Y is along the FM axis. (b) Fermi surface (FS) mapping in the k_x - k_y plane using the photon energy of 63 eV (k_z = π). (c-d) Corresponding spectral images along the high symmetry lines showed in Fig.1(b).

reported by Yi *et al.* [3]. As proposed in ref. [5], resistivity anisotropy in the underdoped Ba $(Fe_{1-x}Co_x)_2As_2$ is induced by the doped atoms anisotropically polarizing its surroundings and working as anisotropic scattering centers in the AFO phase while the origin of the different sign of the in-plane resistivity along the different axes may root in the anisotropic electronic structure of the AFO phase. Recently, the opposite in-plane resistivity anisotropy in FeTe was reported [7], which implies that some anisotropic features of the electronic structure may be 90 ° rotated relative to the defined a/b axis in iron telluride.

References

- [1] J.-H. Chu et al., Science 329, 824 (2010).
- [2] M. Nakajima et al., Phys. Rev. Lett. 109, 217003 (2012).
- [3] M. Yi et al., Proc. Nat. Acad. Sci. USA 108, 6878
- (2011).
- [4] I. R. Fisher et al., Rep. Prog. Phys. 74, 124506 (2011).
- [5] S. Ishida et al., arXiv: 1208.1575v1.
- [6] Y. K. Kim et al., Phys. Rev. B 83 064509 (2011).
- [7] J. Jiang et al., arXiv:1210.0397.

* liu@ wyvern.phys.s.u-tokyo.ac.jp