Orbital character of valence electronic states of epitaxial silicene on ZrB₂(0001) thin film surfaces

Rainer FRIEDLEIN*, Chi-Cheng LEE, Antoine FLEURENCE, Kohei AOYAGI, Taisuke OZAKI, Yukiko YAMADA-TAKAMURA

School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), Japan

Introduction

While free-standing silicene is yet hypothetical, two-dimensional Si honeycomb lattices have recently been prepared on several metallic substrates such as Ag(111) [1] and ZrB₂ (0001) [2]. The structural and electronic properties of epitaxial silicene phases are, however, expected to be significantly altered from those of free-standing silicene. In order to resolve this complex matter for silicene on ZrB₂ (0001), new angle-resolved photoelectron spectroscopy (ARPES) data have been interpreted using a modified approach in density functional theory (DFT) first-principles calculations.

Experimental and Computational

ARPES spectra of epitaxial silicene on ZrB₂(0001) thin films prepared on Si wafers [2] have been obtained with the SCIENTA SES200 analyzer at BL13B using the photon energy of 43 eV. First-principles calculations have been performed within the DFT and a generalized gradient approximation (GGA). A new conceptual unit cell that contains only a single Si atom for silicene, has been introduced in order to better represent the spectral weight as expressed by the imaginary part of the one-particle Green’s function.

Results

ARPES spectra obtained along the Γ - Kₜ direction and in a wide energy range, are shown in Fig. 1. The spectra are similar to those reported previously for the low-binding energy region [2,3]. The comparison of the ARPES spectra with the band structure of the so-called “planar-like” phase [4] at a lattice constant a = 6.480 Å of the (√3 ×√3) unit cell of silicene shows an astonishing and excellent quantitative agreement in terms of the energies and dispersions of electronic states.

All silicene-derived bands are hybridized to some extent with Zr d electronic states, which is consistent with non-negligible interactions at the interface. In particular, while the upward curved bands X₂ and X₃ in the vicinity of the Kₜ(1 × 1) point have major contributions from Si pₓ, pᵧ, and the Zr d orbitals. As already suggested in our previous work [2], these states are therefore of partial π character. Bands X₄ and X₅ also have strong contributions of pₓ orbitals and can be classified therefore as π bands.

On the other hand, bands S₁ and S₂ have almost sole contributions from d orbitals of the outermost Zr layer. This confirms that these states are diboride surface states [2,3] indeed that survive upon the formation of silicene.

The results resolve not only the orbital character of the hybrid silicene-diboride interface but also the previously controversial issue related to the structural configuration of silicene on the ZrB₂(0001) surface that is now considered to be close to the “planar-like” model structure.

References


*friedl@jaist.ac.jp