Introducing Copper Ions into Zeolite Y by the Thallous Ion Exchange Method: Single Crystal Structure of |Cu_{21.6}Tl_{39.2}|[Si₁₂₁Al₇₁O₃₈₄]–FAU

Dipak Sen, Cheol Woong Kim and Nam Ho Heo^{*}

Laboratory of Structural Chemistry, Department of Applied Chemistry, College of Engineering, Kyungpook National University, Daegu 702-701, Korea

1. Introduction

Copper containing zeolites are effective catalysts for the decomposition [1] and reduction [2] of NOx, and are good sorbents in the desulfurization of diesel fuels [3]. The thallous ion exchange (TIE) method might allow the difficulties seen in conventional aqueous ion exchange to be avoided. The fully Tl-exchanged zeolite Y (Tl–Y) was treated with the vapors over CuCl₂(s) at 673 K under anhydrous conditions. The vapor pressures of both CuCl₂ and its decomposition product CuCl are adequate for the following reaction to occur:

$$Tl-Z(s) + vapor (CuCl_2(g), CuCl(g), Cl_2(g)) \rightarrow Cu^+, Cu^{2+}-Z(s) + TlCl(g).$$
(1)

2. Experiment

A single crystal of Fully Tl⁺-exchanged zeolite Y (|Tl₇₁(H₂O)|y[Si₁₂₁Al₇₁O₃₈₄]-FAU, Tl₇₁-Y, or Tl-Y) [4], a colorless octahedron about 0.15 mm in cross-section, was selected and loaded into a fine Pyrex capillary. Then 0.03 g of anhydrous CuCl₂ (brown, Sigma-Aldrich, 99.99%) was put into the same capillary just above the crystal. The crystal and the CuCl₂ were then dehydrated at 673 K at 1 x 10^{-6} Torr for two days. During this process, the CuCl₂ vaporized and decomposed (most of the condensed solid was CuCl₂ (brown) but a small amount was CuCl (white)). The dehydrated crystal was black. The Pyrex reaction vessel containing both the crystal and the dry CuCl and CuCl₂ was then sealed off under the vacuum and heated for 2 days at 673 K. After cooling to room temperature, the capillary containing the crystal, now opaque white, was sealed off. Finally, X-ray diffraction data for the resulting crystal were collected at 294(1) K at the BL-17A beam line of the Photon Factory, KEK, Japan.

3. Results and Discussion

 $|Cu^+_{10.9}Cu^{2+}_{10.7}Tl^+_{39.2}|[Si_{121}Al_{71}O_{384}]-Y$ (approximate formula, see Table 1) was prepared by reacting fully dehydrated and fully Tl⁺-exchanged zeolite Y with $CuCl_2(g)$ and its decomposition products CuCl(g) and $Cl_2(g)$ at 673 K under anhydrous conditions. Its structure was determined using single-crystal crystallography with synchrotron X-radiation and was refined in the space group $Fd_{\overline{3}}$ m (a = 24.769(1) Å) with all 903 unique data; the final error index, $R_1 = 0.075$, was calculated using only the 858 reflections with $F_0 > 4\sigma(F_0)$. About 45 % of the Tl⁺ ions were replaced by 21.6 copper ions per unit cell at the following sites (distances to nearest framework oxygen atoms are given, see Figure 1): 10.7 Cu²⁺ at site I' in the sodalite cavity opposite double 6-rings (Cu²⁺–O = 2.093(9) Å), 3.5 Cu⁺ at site II opposite single 6-rings in the supercage (Cu⁺–O = 2.24(3) Å), and 7.4 Cu⁺ at site III near 12-rings in the supercage (Cu⁺–O = 2.45(7) Å). All Cu⁺ ions are in supercages where they are easily accessible to guest molecules. The remaining ca. 39Tl⁺ ions per unit cell occupy three distinct positions: 12 are at a second site I' (Tl⁺–O = 2.571(9) Å), 23 are at a second site II (Tl⁺–O = 2.732(10) Å), and 4 are at site III' (Tl⁺–O = 2.871(16) Å) near triple 4-rings in the supercages.

Figure 1. Distribution of Cu^+ , Cu^{2+} , and Tl^+ ions in the sodalite cavity and supercage.

 Table 1. Assignment of Oxidation States and Charge

 Budget

Sites	Atoms	Occ. ^{<i>a</i>,}	r, ^{<i>b</i>} Å	NC^{c}	Charge	ΣCharges
I′	Cu1	10.7(5)	0.77	3	+2	21.4
	T11	12.00(17)	1.25	3	+1	12.0
II	Cu2	3.5(9)	0.92	3	+1	3.5
	T12	23.1(3)	1.41	3	+1	23.1
III	Cu3	7.4(12)	1.13	3	+1	7.4
III'	T13	4.1(3)	1.55	4	+1	4.1
	ΣCu	21.6 ^d				71.5 ^f
	Σ Tl	39.2^{d}				

^{*a*}Occupancy given as the number of ions per unit cell. ^{*b*}Radii of Cu and Tl species obtained by subtracting 1.32 Å from the shortest Cu–O and Tl–O bond lengths. ^{*c*}Coordination numbers. ^{*d*}Number per unit cell. ^{*e*}These 71.5 positive charges closely balance the 71– charge of the zeolite framework per unit cell.

4. References

- [1] Y. Li, W.K. Hall, J. Phys. Chem. 94, 6145 (1990).
- [2] M. Iwamoto, Stud. Surf. Sci. Catal. 54, 121 (1990).
- [3] A. Takahashi, F.H. Yang, R.T. Yang, *Ind. Eng. Che m. Res.* **41**, 2487 (2002)
- [4] W.T. Lim, S.Y. Choi, J.H. Choi, Y.H. Kim, N.H. He o. K. Seff. *Microporous Mesoporous Mater.* 92, 234 (2006)

* nhheo@knu.ac.kr