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1 Introduction

The Earth and planetary cores are composed of iron-
nickel alloy and some light elements. Sulfur is a primary
candidate of lightening elements alloyed with iron-nickel.
Therefore, phase relations and structure of the iron-nickel
sulfides at high-pressures and temperatures are
fundamental to study formation process and evolution of
the planetary cores. Here we focus attention on iron-
nickel sulfide (Fe,Ni)sS,. FesS, is known to be stable
above 14 GPa and affect the melting relations in the
system Fe-FeS, but its crystal structure is still unknown
[1]. On the other hand, NisS, is stable even at 1 atm,
which has trigonal symmetry with space group R32 (a-
NisS, heazlewoodite) [2]. This phase is known to
transform into the high pressure orthorhombic structure
with Cmcm symmetry at high pressures [3]. In this study
we examine stability field of high-pressure phase of NisS,
and alloying effect of iron to its crystal structure.

2 Experiment
High pressure and temperature experiments were

conducted at the pressures of 13 to 18 GPa and the
temperatures up to 900 K using the MAX IIl system
installed at PF-AR NE7. X-ray diffraction patterns were
taken by an energy dispersive method using a Ge-SSD at
Bragg angle of 6 degree. Pressure was evaluated by the
unit cell volume of NaCl pressure marker. X-ray profiles
were analyzed using the PD Indexer software package
provided by Seto Y.

3 Results and Discussion

We observed the phase transformation from a-Ni;S; to
the orthorhombic structured-Nis;S, between 300 K and
500 K around 15 GPa (Fig. 1). This is close to the phase
boundary determined by the first-principle calculation [4].
It is, therefore, though to be reasonable that the high-
pressure phase of NisS, is stable above 15 GPa. The
orthorhombic phase can be quenched to room temperature
at high pressures, but it backs into o-NisS, after
decompression. We also observed (FeysNigs)sS, under
pressure and found the orthorhombic structure stabilized
above 700 K around 15 GPa (Fig. 2). Thus about 50 %
FesS, can dissolve into the high pressure NiS, phase.
This implies that Fe;S, which is stable above 14 GPa may
also take the orthorhombic structure with Cmcm
symmetry.
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Fig. 1: The P-T path of in-situ observation of NisS,. Solid
squares are the orthorhombic phase and open symbols are
a-Ni3sS,. Dashed line is a phase boundary evaluated by
the first-principle calculation [4].
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Fig. 2: Energy-dispersive X-ray diffraction profiles of
(FeosNios)sS,.
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