New high-pressure polymorph of In₂S₃ with defect Th₃P₄-type structure

Xiaojing Lai¹, Feng Zhu¹, Rong Huang¹, Xiang Wu¹, Shan Qin^{1,*}, Takumi Kikegawa² ¹Peking University, Beijing 100871 China ²Photon Factory, Tsukuba 305-0801, Japan

1 Introduction

Indium sulfide (In₂S₃) is a sesquisulfide of group IIIA elements in the Periodic Table. It belongs to chalcogenide semiconductor, which has a potential application in photovoltaic devices area [1-3]. At ambient conditions, In₂S₃ crystallizes in a deficient spinel structure (β -phase, *I*4₁/*amd*, *Z* = 16). A high-pressure modification of In₂S₃ with corundum structure (ϵ -phase, R3c, *Z*=6) has been identified by Range and Zabel [4]. No other study was done to the high-pressure behaviour of In₂S₃. Since A₂B₃-type sulfides provide implications about the structural behavior of the Earth's mantle minerals, especially the (Mg,Fe)SiO₃ perovskite (Pv), we here report the results of the high-pressure synchrotron XRD study of In₂S₃.

2 Experiment

The In₂S₃ sample with a purity of 99.99 % was purchased from Alfa Aesar. The sample was characterized by XRD at ambient conditions, which clearly showed that it was β -phase (*I*4₁/*amd* and Z = 16) without any impurity.

Two runs of *in situ* high pressure synchrotron X-ray powder diffraction experiments using diamond anvil cells (DAC) were conducted at beamline PF-AR NE1 of KEK. High-temperature annealing was employed at certain pressure in these two runs by a portable laser heating system to overcome the potential kinetic effects on the phase transition and relax the stress gradient in the DACs.

3 <u>Results and Discussion</u>

The XRD patterns after laser-annealing in both runs show a new phase different from the β -phase. By indexing the peaks, we found this phase belongs to a defect Th₃P₄-type structure (*I*43*d* and *Z*=5.333). Fig. 1 shows the Rietveld refinement of this phase at 35.6 GPa and 69.4 GPa, respectively. The refinement results were shown in Table 1.

Table 2. Crystallographic data for defect Th_3P_4 -type In_2S_3 ($In_{2.667}\square_{0.333}S_4$, $I\overline{4}3d$ and Z = 4).

	35.6 GPa	69.4 GPa
a (Å)	7.557(1)	7.2423(5)
$V(\text{\AA}^3)$	431.6(2)	379.87(8)
$In1(12a)^{a}$	(0.375,0,0.25)	(0.375,0,0.25)
$S1(16c)^{a}$	(0.083,0.083,0.083)	(0.083,0.083,0.083)
$U_{\rm iso}({\rm In})$	0.023	0.002
$U_{\rm iso}({ m S})$	0.080	0.016
WR_p %	5.62	2.01
$R_{\rm p}$ %	3.31	1.56

^a Atomic positions not refined.

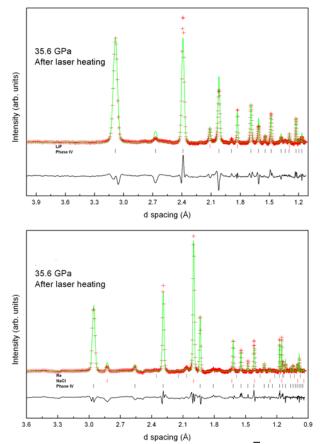


Fig. 1 The Rietveld refinement of In_2S_3 ($\overline{I43}d$) at 35.6 Gpa and 69.4 GPa after laser heating. Measured (red crosses) and calculated (green continuous line) intensities, positions of the reflections (red, black, blue short bars) and difference curve (black line) between observed and calculated spectra are shown.

Acknowledgement

This work was supported by Natural Science Foundation of China (grant no. 41072027, 11079009 and U1232204). The authors would like to thank PF staffs for their help in the experiments.

References

- [1] P.P. N. Revathi and K.T. Ramakishna Reddy, Energy Procedia 2 195-198 (2010).
- [2] A.M.V. Niyum et al., Physica B 350 383-385 (2004).
- [3] J.R. L. Aldon *et al.*, Phys. Rev. B 58 11303-11312 (1998).
- [4] K. Range and M. Zabel, Z. Naturforsch. B **33** 463-464 (1978).

* sqin@pku.edu.cn