Unique I₂ Sorption to a Kinetic Assembling Porous Coordination Network

Hakuba Kitagawa, Hiroyoshi Ohtsu, and Masaki Kawano* The Division of Advanced Materials Science Pohang University of Science and Technology (POSTECH) 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea

1 Introduction

Kinetic assembly produces a new class of porous coordination networks because it can generate interactive pores. We investigated kinetic/thermodynamic assembly of porous coordination networks using labile CuI units; by changing cooling ratio of a hot DMSO solution of Cu₄I₄(PPh₃)₄ and TPPM, we selectively prepared two porous coordination networks. The kinetic network 1 from rapid cooling of the solution consists of CuI helical chain structure with interactive iodide on the pore surface. On the other hand, the thermodynamic network 2 from slow cooling of the solution consists of CuI dimer structure with a small pore. Herein, we report unique I₂ encapsulation into the pores of these networks to demonstrate unique properties of the kinetic network. Nowadays, I2 sorption to porous compounds has significant meaning, for example, as nuclear fission product absorber.

2 Experiment

 I_2 encapsulation to 1, desolvated 1 (1'), 2 and desolvated 2 (2') was performed by vapor I_2 diffusion; A vial (5 mL) containing the crystals of the network (ca. 5 mg) and a vial (5 mL) containing the solid iodine (ca. 15 mg) were put in a bigger vial (50 mL). After the vial was closed and kept for 1 d. The black crystals that suggest iodine encapsulation were collected. The inclusion of iodine was confirmed by elemental analysis, X-ray analysis, weight increase and TG.

3 Results and Discussion

The crystal structure analysis of the desolvated crystal of **1**' exposed on I_2 vapor for 1 d resulted in $(1' \cdot 0.96I_2)_n$. The diffraction became better (the maximum resolution of X-ray diffraction changed from 0.91 Å to 0.75 Å) than before I_2 encapsulation. The crystal structure analysis revealed that a pore of solvated isomer **1** and desolvated isomer **1**' encapsulated I_2 by chemisorption through the formation of I_3^- group on the bridging iodides with reasonable geometry of I_3^- anion (Fig. 1a).

On the other hand, desolvated network **2'** shows physisorption of I₂: the desolvated crystals of isomer **2'** turned black within 5 min, resulting in $(2' \cdot 2.125I_2)_n$. The crystal structure analysis revealed that I₂ molecules are arranged linearly along 1D channel and highly disordered (Figure 1c, d). Moreover, compared with $(1' \cdot 0.96I_2)_n$, $(2' \cdot 2.125I_2)_n$ shows remarkable affinity of I₂: I₂ desorption temperature in TG measurement, 380 K for

(1'•0.96I₂)_n; 450 K for (2'•2.125I₂)_n. The large desorption temperature difference can be explained by steric repulsion between adsorbed I₂ molecules and the framework. Because the crystal structures of desolvated isomer 1' and 2' at 80 K show severe disorder of phenyl and pyridyl rings, at high temperature these rings can rotate freely. Network (2'•2.125I₂)_n has no steric hindrance with encapsulated I₂ molecules. However, in the case of (1'•0.96I₂)_n severe collision can occur between adsorbed I₂ molecules and the pyridine rings (Fig. 1b). Therefore, (1'•0.96I₂)_n shows smooth desorption of I₂ over 380 K even chemisorption. Furthermore, because the pore window of the isomer 2' is exactly fit for iodine, the physisorbed I₂ can be retained in the pore up to 450 K.

Fig. 1: Structures of (a), (b) $(1' \cdot 0.96I_2)_n$ and (c), (d) $(2' \cdot 2.125I_2)_n$.

 I_2 adsorption was further tested using I_2 solution. When the crystals of **1**' or **2**' were immersed, the I_2 solution color was gradually faded because of encapsulation. In fact, the kinetic analyses of UV-Vis spectroscopy indicate the chemisorption of **1**' and physisorption of **2**'.

In summary, the kinetic network **1** shows unique I_2 adsorption based on the interactive pore: I_2 is trapped by chemisorption through I_3^- formation. However, the chemisorbed I_2 readily desorbed over 380 K due to dynamic motion of the framework. On the other hand, thermodynamic network **2** shows physisorption of I_2 . The physisorbed I_2 retained by 450 K due to exact fit of I_2 .

References

- H. Kitagawa et al., Angew. Chem. Int. Ed. 52, 12395 (2013).
- *mkawano@postech.ac.kr