# **XANES** Studies on Valence fluctuation in YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub>(x=0~1.0)

Koichi HIRAOKA\*<sup>1</sup>, Tao ZHUANG<sup>1</sup>, Makio KURISU<sup>1</sup>, Tatsuo KAMIMORI<sup>1</sup>, Kensuke KONISHI<sup>1</sup>,

<sup>1</sup>Ehime Univ., Matsuyama, Ehime 790-8577, Japan <sup>2</sup> Tottori Univ., Tottori, Tottori 680-8522, Japan

# **<u>1 Introduction</u>**

YbInCu<sub>4</sub> is known as a valence phase transition material at  $T_v=42K[1]$ . Yb valence changes from +2.9 to +2.7 above and below  $T_v[2]$ . The valence transition in YbInCu<sub>4</sub> is very sensitive to substitution effects. In this report, we investigate substituting effects of Sn for In on the temperature variation of Yb valence in YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub> by measuring Yb-L<sub>III</sub> edge XANES spectra.

### **2 Experimental Details**

Single crystal samples of YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub>(x=0, 0.3, 0.7, 0.9, 1.0) were made by self-flux method. They were crushed into powder, and the powdered samples were used. The XANES spectra were obtained by a transmission mode at the facilities of XAFS beam line BL-9C in PF-KEK. The temperature dependences of XANES spectra were measured in the temperature range from 11 K to 300 K.

# **3 Results and Discussion**

Figures 1 and 2 show the Yb-L<sub>III</sub> XANES spectra of YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub> (x=0, 0.3, 0.7, 0.9, 1.0) at 11 K and 300 K, respectively. The envelope of XANES spectrum is composed of divalent and trivalent Yb profiles. The spectrum considerably changes between x=0.3 and 0.7. The result shows that the ratio of Yb<sup>2+</sup> : Yb<sup>3+</sup> increases with increasing the Sn content x. The Yb valence varies from +2.85 for x=0.3 to +2.49 for x=1.0 at 11 K. The effect of temperature change on the Yb valence is less remarkable than that of the Sn substitution, suggesting that the valence of Yb ion is fluctuating in the whole temperature range.

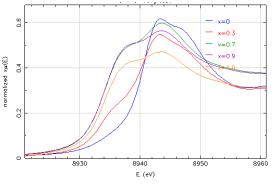



Fig. 1 Yb-L<sub>III</sub> edge of YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub> (x=0, 0.3, 0.7, 0.9, 1.0) at 11 K.

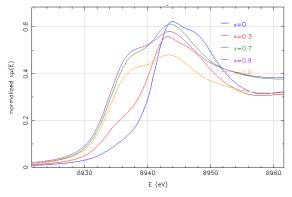



Fig. 2 Yb-L<sub>III</sub> edge of YbIn<sub>1-x</sub>Sn<sub>x</sub>Cu<sub>4</sub> (x=0, 0.3, 0.7, 0.9, 1.0) at 300 K.

#### References

- [1] I. Felner and I. Nowik, Phys. Rev. B 33, 617 (1986).
- [2] H. Sato et al., Phys. Rev. Lett. 93, 246404 (2004).

\*hiraoka@eng.ehime-u.ac.jp

Ikuo NAKAI<sup>2</sup>