Proton Diffusion Path and Electron Density of Hydroxyapatite

Masatomo Yashima,¹ Naoyuki Kubo,² Kazuki Omoto,² Hirotaka Fujimori,¹ Kotaro Fujii,¹ Kenji Ohoyama¹

¹ Department of Chemistry and Materials Science, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
² Department of Materials Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
³ Department of Applied Chemistry, Yamaguchi University, Ube, 755-8611, Japan
⁴ Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan

1 Introduction
Calcium hydroxyapatite (HAp, Ca₁₀(PO₄)₆(OH)₂) is one of the most important bioceramics, the principal inorganic component of bone and teeth, catalysts and proton (H⁺) conductor for energy conversions. Here, we report the visualization of the long-range proton diffusion pathway in HAp at 923 K and electron- and neutron scattering length-density density distributions of HAp [1-4].

2 Experiment
A stoichiometric (Ca/P=5/3) hydroxyapatite (Ca₁₀(PO₄)₆(OH)₂, HAp) sample without impurity phases was prepared by a gel route. Neutron powder diffraction data of HAp were measured in air at 298 K, 673 K and 923 K (wavelength: 1.84491 and 1.84780 Å). High-angular-resolution synchrotron X-ray powder diffraction data were measured using the multiple-detector system at the BL-4B2 beam line of the Photon Factory (wavelength: 1.197146(2) Å).

3 Results and Discussion
Synchrotron and neutron diffraction measurements showed that the present HAp is monoclinic (P₂₁/c) at 298 K and hexagonal (P₆₃/m) at 673 and 923 K (Fig. 1). The refined crystallographic parameters from the present neutron data at 923 K agree well with those from the present synchrotron data at the same temperature. The crystal structure of hexagonal HAp consists of (1) hydroxide anion (OH⁻) in the hexagonal channel, (2) PO₄ tetrahedra and (3) Ca²⁺ cations. Figure 2 shows the electron-density distribution of HAp at 923 K. The hydrogen atom was confirmed to exist as a proton in the hexagonal axis (ex. 0, 0, 0.1993 at 923 K), because the electron-density distribution shows the charge transfer from hydrogen atom to oxygen one.

Using the refined structure and bond valence method, we have successfully visualized (1) one-dimensional proton diffusional pathways along the c axis in the hexagonal channel and (2) two-dimensional proton migration pathway network on the ab planes at z = 0 and 1/2. The proton diffusion and reorientation of hydroxide ions (OH⁻) are a complex sinusoidal process in the hexagonal channel along the c axis, which is consistent with the anisotropic nuclear-density distribution of proton obtained by the neutron diffraction and maximum-entropy method.

References and achievements

* yashima@cms.titech.ac.jp