Interaction between lipid-liposome and amyloid-beta protein observed by time-resolved small-angle X-ray scattering

Shoki Sato, Ryota Kimura, Kazuki Takeuchi, and Mitsuhiro Hirai^{*}. ¹ Graduate School of Engineering, Gunma University, Maebashi, Gunma 371-8510, Japan.

1. Introduction

While the steady-state existence in the size and shape of liquid-ordered microdomains in cell membranes, socalled 'lipid rafts', still remain the subject of debate, glycosphingolipid-cholesterol rich regions in plasma membranes have been considered to have a function as platforms for signaling and sorting. In addition, recent spectroscopic studies show that the interaction between monosialoganglioside and amyloid beta (AB) protein promotes the transition of A β from the native structure to the cross-beta fold in amyloid aggregates. However, there is less evidence on the time-transient structural information of the formation of $A\beta$ -membrane complex. We have carried out the time-resolved small-angle X-ray scattering measurements of the interaction between AB protein and G_{M1}-cholesterol-DPPC or DOPC mixed vesicles.

2. Experiment

Lipid-liposome measured was composed of monosialoganglioside (G_{M1}) from bovine brains, cholesterol and phosphocholine (DPPC) diplmitoyl or dioleoyl phosphocholine (DOPC). These lipids were purchased from Avanti Polar Lipids Inc. (USA) and used without further purification. Large uni-lamellar vesicle (LUV) solutions were prepared by an extrusion method using the LiposoFast Basic extruder system (Avestin, Canada) with a polycarbonate filter (pore diameter of 50 nm from Nucleopore, Plesanton, USA). The samples were subjected to ~40 passes through the filter. The molar ratio [G_{M1}]/[cholesterol]/[DPPC or DOPC] of the mixtures was 0.1/0.1/1, where the phospholipid concentration was fixed at 1 % w/v. Amyloid β protein (1-40) purchased from Wako Chem. Co. was used without further purification. The detail of LUV preparation was described elsewhere [1, 2]. The solvent condition was 10mM Hepes, pH7.4, 50mM NaCl, 5mM KCl, 2mM MgCl₂, 2mM CaCl₂. SAXS measurements were performed by using the synchrotron radiation small-angle X-ray scattering spectrometer installed at BL10C beam port of PF at KEK, Tsukuba, Japan. The X-ray wavelengths was 1.4 Å, and the sample-to-detector distances was 190 cm. X-ray scattering intensity was recorded by an imaging plate system of R-AXIS IV from RIGAKU Co. The exposure time was 60 seconds. Sample cells composed of a pair of thin-quartz windows with 1 mm path length were used.

3. Results and Discussion

Fig. 1 shows the time evolution of distance disrtibution function p(r) after addting A β protein in LUV solutions,

which were obtained by the Fourier transform of the observed SAXS curves. In Fig. 1, A and B correspond to G_{M1}-cholesterol-DPPC LUV and G_{M1}-cholesterol-DOPC LUV, respectively. The small humps appearing in the p(r)function at short distance below ~50 Å reflect the intrabilayer structure of LUV [1]. The broad peaks with the maximum at ~400 Å result from the globular structure of LUV. The time-evolution of the p(r) function after the addition of A β in Fig. 1 only shows a minor change in the time range from 0 to 400 minites. The present SAXS results suggest that the interaction between AB and raftregion (G_{M1}-cholesterol rich region, so-called lipid rafts, on the outer-leaflet of LUV [3. 4]) proceeds without an evident deformation of LUV structure. To analyse some local change of the bilayer structure. We are planning to execute wide-angle X-ray scattering experiments. The detailed results and discussion will be shown elsewhere.

Fig. 1: Time evolution of distance distribution function p(r) after addting A β protein in LUV solutions, where A and B correspond to G_{M1}-cholesterol-DPPC LUV and G_{M1}-cholesterol-DOPC LUV, respectively.

References

- [1] T. Onai & M. Hirai, J. Phys. Conf. Ser., 247, 012018 (2010).
- [2] M. Hirai et al., Eur. Phys. J. E 36: 74 (2013).
- [3] M. Hirai et al., Biophys. J. 85, 1600 (2003).
- [4] M. Hirai et al., Physica B 385-386, 868 (2006).

^{*} mhirai@gunma-u.ac.jp