Single-bunch Operation, Generation of Ultra-short Pulses at Storage Ring And their Applications (*KEK International Center, Feb.28-Mar.1, 2005*)

Introduction on Single Bunch Mode and Ultra-Short X-Ray Plan at SSRF

Guimin Liu and Minghua Zhao SSRF/SINAP Feb 28, 2005

Outline

Introduction
Single Bunch Mode
Ultra-Short X-Ray

I. Introduction

Fig. Peak Brightness versus pulse width for various X-ray sources (H. Winick)

- ◯ Light Based:
- Light microscopic
- Fluorescence
- •XPS
- •XRM
- Raman-micrscopic
- IR-micrscopic
- SMART project at BESSY-II
- Pump probe techniques
- OElectron Beam Based:
- STM/AFM
- •TEM
- SEM

Fig. Chemical information provided by different spectromicroscopic probes versus their lateral resolution (A. Hitchcock et al)

SSRF (Shanghai Synchrotron Radiation Facility)

SSRF 3rd generation SR:
E ~ 3.5 GeV, Emittance ~ 3.9 nm-rad
I_b ~ 5 mA, Beam Pulse width ~ 36 ps
Circumeference ~ 432 m

O6-10GeV Linac for X-ray FEL (future plan)

Fig. Layout of SSRF with X-ray FEL (Z. Zhao et al)

Fig. Bird view of SSRF with X-ray FEL plan

II. Single Bunch Mode

100MeV Electron Linac3.5GeV Booster3.5GeV Storage Ring

中國科学院上海走自物建研究所 SINAP Shanghai Institute of Applied Physics, Chinese Academy of Sciences

SSRF Storage Ring Parameters

Lattice Structure	DBA	Low-emittance mode	Normal Mode
Enenrgy	GeV	3.5	3.5
Circonference	m	432	432
Natural Emittance	nm rad	3.9	7. 97
Current: Multi-bunch Single bunch	mA	200~300 5	200~300 5
Number of Cells		20	20
Straights: Length×Number	m	12×4、6.5×16	12×4、6.5×16
$\beta_x/\beta_y/\eta_x$ in middle of long straight	m	10.0/6.0/0.15	10.0/6.0/0.05
$\beta_x/\beta_y/\eta_x$ in middle of standard straight	m	3.6/2.5/0.12	3.6/2.5/0.04
Betatron Tune Q _x /Q _y		22.22/11.32	22.22/11.32
Bunch Length	mm	4.0	4.3

The Pulse Structure of SSRF

• Harmonic number h=720 (potential buckets in the ring), which may be filled with electrons in various ways.

• These pattern differ in total current, electron bunch structures and lifetime.

 Single bunch, two and few bunches, Beam Pulse width ~ 36 ps

 Beam Lifetime ~ 4.0 hrs, Top-up Injection needed.

Fig. Bunch Length Vs Bunch Current, $Z_{\prime\prime}=0.4\Omega$

The High Speed Chopper System and its Synchronisation for picosecond experiments

• The chopper was originally built for single bunch selection from the single bunch mode and hybrid mode at the ESRF.

• The main challenge was the extremely short time between pulses from the synchrotron. For example, in the multibunch mode, x-rays arrive every 2.0 ns, impossible to isolate mechanically.

• The only usable modes at present are Fig. A three dimensional picture for the the 1-bunch, the 8-bunch mode and the Mechanical chroper. Minimum opening hybrid mode. The time between pulses time is 0.10 µs, Maximum opening time is 1.44 µs, 0.18µs and 0.32 µs respectively.

is 0.17 ms, Phase jitter 10 ns. (a fast rotating shutter).

Generation of Femtosecond Synchrotron Pules ----- Electron Beam Slicing

• The laser-induced energy modulation can be more than five times larger than the rms beam energy spread,

•Only a thin slice of electrons (temporally overlapped with the laser pulse) experience this modulation.

• The energy-modulated electrons are spatially separated from the rest of the electron bunch, in a dispersive section of the storage ring, by a transverse distance that is several times larger than the horizontal size of the electron

beam

Figure 17. Schematic illustration of the technique for generating femtosecond synchrotron pulses, (a) laser/electron beam inter-action in resonantly-tuned wiggler, (b) separation of accelerated femtosecond electron slice in a dispersive section, (c) generation of femtosecond x-rays at an undulator or bend-magnet beamline.

■The beam slicing method employs a femtosecond laser to modulate the energy of an electron bunch over the distance of the laser pulse length. To achieve a sufficient separation of the sliced electrons, the energy modulation must be several times larger than the energy spread of the electron beam ($E \ge 5E' \approx 13 \text{ MeV}$ at the SLS). Therefore, using state-of-the-art lasers, the electron beam energy cannot be much higher than 2.5 GeV.

■For intermediate energy storage rings such as the SLS, this opens a unique avenue for time-resolved experiments: For the production of short photon pulses, the combined effect of the electron beam slicing method and the use of higher undulator harmonics means that high brightness sub-picosecond X-rays up to 18 keV are accessible at undulator beamlines specially developed at user facilities with a beam energy of about 2.5 GeV.

■Slicing method generates tipically 10² to 10⁴ph/0.1BW per bunch, because the repetition rate of high power laser's repetition rate is limited to 1-4kHz, this is a serious drawback:

But it can be implemented now at BESSY-II, ALS, SLS, SOLEIL(planned).

The most favourable geometry is one in which the modulator (Wiggler) and the radiator (Undulator) are positioned in the same straight section of the ring.

III. Ultra-Short X-ray FEL Plan

□ SDUV-FEL

Femtosecond/THz source

Furture Shanghai X-ray FEL

SDUV-FEL Program

□ SDUV-FEL (Shanghai Deep-UV Free-electron Laser)

□ A Partly funded research program on FEL

- R&D for high gain X-ray FEL
- Develop an DUV-FEL test facility at SSRF/SINAP
- Funded by CAS, MOST and NSF since 2000
- 100~160MeV Linac under construction
- □ A joint research program of CAS
- SSRF/ Shanghai Institute of Applied Physics
- **BFEL/ Institute of High Energy Physics**
- HLS/ NSRL, Univ. of Science and Technology of China

SDUV-FEL HGHG Scheme

SDUV-FEL Performance

	Phase I	Phase II
FEL Parameters		
Wavelength (nm)	264	88
Output Power (MW)	~80	~140
Gain Length (m)	~0.7	~0.8
Electron Beam Parameters		
Energy (MeV)	~159	~276
Peak Current (A)	300	400
Emittance (mm-mrad)	6	4
Local Energy Spread (rms)	<0.1%	
Undulator Parameters		
Period (cm)	2.5	
Gap (cm)	1.0	
Length (m)	~10	

Start-to-End Simulation (260nm SASE)

SDUV-FEL Linac

Femtosecond/THz source

- Femto-second electron facility.
- Coherent THz source Coherent transition radiation and synchrotron radiation.

Parameters of the Coherent FIR Source (designed)

Frequency	THz	0.3~5
Pulse flux	photons/(pulse·1%bw)	$10^8 \sim 5 \times 10^{14}$
Radiation power per pulse	µJ/(pulse·1%bw)	10 ⁻⁷ ~0.1
Average flux *	photons/(s·1%bw)	$10^{12} \sim 10^{19}$
Angular divergence	mrad	10~50

* 10 macropulse per second. One marcopulse contains more than 1000 micropulse.

Alpha Magnet

EPU for THz

Beam Energy	20 MeV
Period Length	100 mm
Period Number	5
Gap	36 mm
Vertical Peak Magnetic Field	0.59 T
Horizontal Peak Magnetic Field	0.35 T

Furture Shanghai X-ray FEL

100~300 MeV DUV (70~300nm) FEL
540 MeV soft X-ray (3 ~ 10nm) FEL
6~10 GeV X-ray FEL (Future Plan)

