The Role of the Time-Resolved Crystallography Based on SOR-Laser Combined Technology in Nano-Scale Materials Science

> Shin-ya KOSHIHARA Department of Materials Science Tokyo Institute of Technology & ERATO, JST

Contents

- Characteristics of Photo-Induced Phase Transition Cooperative interaction between 'materials' and 'light'
 Examples
 - 2-1:Photo-induced Ferro-electricity in Neutral-Ionic Transition System
 - 2-2:Ultra-fast (THz), highly sensitive and non-equilibrium melting of Charge Order in Organic Super Conductor Candidate (EDO) (Metal-Insulator Transition)
- 3:Summary

Importance of X-ray for materials research from view point of new axis 'Cooperative Light Excitation'.

Collaborators

Dr. Eric Collet, Dr. Marie-Hélène Lemée-Cailleau, Dr. Marylise Buron-Le Cointe, Professor Hervé Cailleau, Profrssor Simone Techert, Dr. Michael Wulff, Professor Tadeusz Luty

Professor G.Saito, Professor H.Yamochi, Mr.A.Ota (Kyoto Univ.) and Dr. G.Shao

Mr.T.Hasegawa (Tokyo Inst. Tech.)

Professor S.Adachi, Professor H.Sawa, Miss R.Tazaki, Dr. J.Takahashi, Dr. S.Nozawa and Dr. M.Daimon (KEK & ERATO)

My group

Dr. T.Ishikawa, Mr.M.Kurita, Mr.N.Uchida, Mr. S.Fukaya, Mr. H.Shimoda, Mr. Y.Sakano, Mr. M.Chollet and Mr.L.Guerin

What is photo-domino ?

Photoinduced solid state phase transition

Out of equilibrium and <u>multi-scale</u> process in solids :

Nonequilibrium behavior in relaxation process of photoexcited species ; Energy relaxation via specialized mode and its selection (coherent relaxation)

Lattice Relaxation Adiabatic Potential Energy **Transient** idon ate state New Lattice Structure and Electronic Order False Ground **Ground State State** Microscopic Nanometric Macroscopic Lattice **Order** Parameter Distortion

Relation even with Coherence

 $\frac{1}{T_c}$

Solid state molecular switching

Characteristics of Photo-Domino

(1) Threshold

Ordinary Photo-induced

Effect

Excitation Intensity

Photo-induced Phase Transition (PIPT)

Excitation Intensity

(2) Dynamical phase separation, Phase switching dynamics

(Relation with internal fluctuation)

(3) Photonic Switching Effect

2:Examples of Materials Design for Strongly Electron-Lattice Coupled System

"Why molecules make solid?"

Three Classifications1: Molecular Solid2:Covalent Bond3:Ionic

"To be or not to be, that is the question for molecules"

Discovery of a Neutral-to-Ionic Phase Transition in Organic Materials

J. B. Torrance,^(a) J. E. Vazquez, J. J. Mayerle, and V. Y. Lee *IBM Research Laboratory, San Jose, California* 95193 (Received 25 August 1980)

Compound TMPD-tetrafluoroTCNQ dimethylphenazine-TCNQ TMPD-TCNQ TMPD-chloranil TMDAP-TCNQ TTF-chloranil TTF-fluoranil DibenzeneTTF-TCNQ DEDMTSeF-diethylTCNQ TMDAP-fluoranil TTF-dichlorobenzoquinone perylene-tetrafluoroTCNQ perylene-DDQ perylene-TCNE perylene-TCNQ TTF-dinitrobenzene pervlene-chloranil pyrene-TCNE pyrene-chloranil anthracene-chloranil hexamethylbenezene-chloranil naphthalene-TCNE anthracene-PMDA anthracene-tetracyanobenzene phenanthrene-PMDA

N/I

N

N

N

N

Ν

Ν

N

Ν

Ν

Ν

Ν

Ν

Ν

N

N

Ν

Ν

Ν

Ν

Ν

N

N-I Transition in TTF-CA(Photo-ferroelectricity)

- Mixed stack of Donor (TTF) and Acceptor (CA)
- At high temperature (>82K) Neutral At low temperature Ionic

 $\dots D^{\circ} \quad A^{\circ} \quad D^{\circ} \quad A^{\circ} \quad (D^{+}A^{-}) (D^{+}A^{-}) D^{\circ} \quad A^{\circ} \quad D^{\circ} \quad A^{\circ} \quad \dots$

Movie of cooperative CT

Photonic switching between N and I phase is possible ?

J.Phys.Chem. FEATURE ARTICLE 103,(1999) 2592

Cooperative CT induced by fs laser pulse

Nonlinear response (Threshold)

Structure has changed ? (key factor for nonlinear optics)

Key Technology is Molecular Movie

- Structural cange occurs accompanied with CT ?
- Long range order may be generated under non-equilibrium condition ?

• Optical control of nonlinear optical property (SHG) is possible ?

TIME-RESOLVED CRYSTALLOGRAPHY

Delay-time modulation spectroscopy using a cw mode-locked Nd:YAG laser synchronized with the synchrotron radiation pulses (invited)

Tadaoki Mitani, Hiroshi Okamoto, Yoshihiro Takagi, Makoto Watanabe, and Kazutoshi Fukui

Institute for Molecular Science, Okazaki 444, Japan

Shinya Koshihara

Faculty of Science, University of Tokyo, Tokyo 113, Japan

Chihiro Ito

Faculty of Science, Nagoya University, Nagoya 464, Japan (Presented on 1 September 1988)

Rev. Sci. Instrum., Vol. 60, No. 7, July 1989

Technique for synchronization between SOR and modelocked laser in 'IMS' has been established in 1987.

Experimental set-up : ID09B beamline at the ESRF

STRUCTURAL STUDY OF THE PHOTO-INDUCED N-I TRANSITION: TTF-CA

Monochromatic experiment

ID9 ESRF

Structural reorganization 3D domains

Large part transformed

time-scale similar to previous reesults

Transition in I to N direction

Europhysics Lett., 59 (2002) 619.

L.Guerin et.al. Chem. Phys. In press Already published in Web form

PHOTO-INDUCED STRUCTURAL ORDER OBSERVED AT ID-09 IN ESRF

Complete data collection : scattered intensity in the reciprocal space.

Molecular Movie Apparatus Everyday Working in KEK-AR

Summary for TTF-CA

- Photo-induced ferroelectric order has been confirmed
- Total volume change induced by photo-excitation seem to be very small
- Gigantic changes in various property as a results of cooperative CT, structural and Spin (dimerization) interactions.

J.Phys.Chem. FEATURE ARTICLE 103,(1999) 2592 Europhysics Lett., 59 (2002) 619. Science, 300(2003)612.

Why (EDO)₂PF₆ is important for the study of *Photo-Domino effect?*

A noble metal (M) insulator (I) transition (Charge Order:CO) accompanied with multi-instability at 280K

What occurs in a system with multicooperativity by photo-excitation ? Non-equilibrium Melting of CO !

Direct Observation of Bonding and Charge Ordering in (EDO-TTF)₂PF₆**

Shinobu Aoyagi, Kenichi Kato, Akira Ota, Hideki Yamochi, Gunzi Saito, Hiroyoshi Suematsu, Makoto Sakata, and Masaki Takata* Powder MEM based electron density

Angew. Chem. Int. Ed. 2004, 43, 3670 - 3673

Link service by AAAS: http://www.coechem6.titech.ac.jp/kenkyu1.htm

OThe same type of MI transition was observed at 268K in EDO_2AsF_6 .

OAt RT, the salt of CIO_4 was isostructural to that of the insulating phase of the salt of PF_6 and AsF_6 .

Crystal structures of (EDO-TTF)₂PF₆ at RT and at 260K

At 260K Molecular deformation -F-F-B)-(B-F-F-B)-(B-

> [0,+1,+1,0] (BFFB) type Charge Ordering

J. Mater. Chem., (2002) 12, 2600

Multi-instability:

Charge ordering, Anion ordering, Changes in the magnetic character, Molecular conformation

Room ¹/₄ at Room Temp.

Anomalous response in ¹/₄ systems

It is necessary to focus on "Mott-CO-Metal" critical point

Syn.Met. 137 (2003) 1331

 10^{6} 10^{5} 10^{4} 10^{3} 10^{3} 0^{50} 10^{0} 150 200 250 300Temperature(K)

The ferroelectric Mott-Hubbard phase in organic conductors. S. Brazovskii ^a P. Monceau^b F. Nad^c

Anomalous Dielectric Response in the d Correlated Metallic State of -(BEDT-TSF)₂FeCl₄

Hiroshi MATSUI et.al. JPSJ 70 (2001) 2501

Optically Reversed Peierls Transition in Crystals of Cu(dicyanoquinonediimine)2

F. O. Karutz, J. U. von Schütz, H.Wachtel, and H. C. Wolf

Target point based on 6th sensitivity of experimentalist: Multi-instability of Charge, Spin and Lattice in Photo-excited state

第5図
 ギリシャ神話の三身神ヘカテ。
 励起子研究でのワニヤ励起子(正面),フレンケル励起子(側面),電荷移動型励起子(背面)にたとえられる。

To eat, or not to eat, that is question.

M-I transition probe by photo-excitation

$$(EDO-TTF)_{2}PF_{6}$$

($T_{MI} = 280 \text{ K}$)
Pump:1.55 eV, *E//b*
 6.4×10^{14}
Photons/cm²
Probe:*E//b*
 $T = 180 \text{ K}$

1:Quite similar to thermally induced I-to-M transition
2:Highly efficient and fast conversion with 800nm excitation

(a few ten μ J/cm² pulse:1 photon for every few hundreds molecules)

Fast Time-dependence in reflectivity change

Pump:1.55 eV, *E//b* 6.4×10^{14} Photons/cm² Probe: E//b *T* = 180 K

Vibration structure scarcely depends on probe wavelength

Some vibration in electronic structure

A few Raman lines in LT-phase was confirmed in 35–140 cm⁻¹ region: Important role of Coherent phonon for ultra fast phase conversion !

Raman Spectra in Low Frequency Region Observed by Low Temperature Micro-Raman System

Temperature dependence

Softening of the phonon mode was clearly observed as the temperature increases.

The period of the first vibration seems to depend on the temperature

Excitation Intensity Dependence

Nonlinear response was clearly observed at rather large Δt .

Both phase conversion and relaxation process strongly depend on the excitation intensity

(and electric field, bias current etc.)

Time dependence

Interference at domain wall?

Excitation Intensity Dependence (at 1.72 eV)

Photo-domino on phonon coherence (POPC) mediated by k=0 phonon mode via E-L collaboration ?

Molecular and lattice structure are really vibrating as an origin of the stability of PIPT process ?

Electronic distribution is really correlated with lattice ?

Displacive excitation

Impulsive excitation

Summary

 $(EDO-TTF)_2 PF_6$ crystal shows highly sensitive (50% efficiency for 1photon/1000 molecules) I (CO)-to-M like PIPT within 1 ps combined with coherent phonon propagation (POPC Mechanism)

Nonlinear response to excitation intensity has been observed (importance of co-operativity)

(Mode selection for energy relaxation combined with sub-nano scale materials design)

Femto-sec. X-ray crystallography will be a key for solving mechanism. (Science 307 (2005) 86.) Link service: http://www.coechem6.titech.ac.jp/kenkyu1.htm

How the same class of materials can generate what a different impression !?

Renoir

Monet

 $\frac{1}{4}$ system can become the bridge among scientific fields just like the famous one located near Paris ?

Importance of Non-equilibrium and Ultrafast Dynamics (Application in Fine Machining)

Top of the match stick

Excited by 100fs light pulse of 800nm (1mW, 1kHz)

Fired

Excited by CW light of 800nm

with the same intensity (1mW)

M.Takesada and S.Koshihara *Look Japan* April 2001 http://www.lookjapan.com/LBst/01AprNT.htm

a)

b)

- (a) Nano-machining of diamond-single crystal by fs-pulse with 800nm, 100fs and 0.05mW
- (b) Observation by confocul microscope

M.Takesada et.al.,

Jpn.J.Appl.Phys. 42 (2003) 4613

New Collaboration with Materials science (Small Science) and Accelerator Science (Big Science)

Non-equilibrium and Dynamical Materials Science

Development of dynamically correlated systems

(Photomagnet, Photodielectrics, Highly Sensitive Swithching Materials) SOR-Laser synchronized system

(Pico-sec Molecular Movie for Real Materials Science including Bio-system) fs-molecular movie based on international collaboration

(Fs-X-ray, Combination with XAFS technique and so on)

The End Thank you for your attention