Single Bunch Purification at PF and PF-AR

Takashi OBINA Photon Factory, KEK

Typical 1day operation of PF and PF-AR

PF-AR

Purification at PF-Ring

- Single bunch operation

 Initial stored current : 75mA
 Injection : 3 times/day
- Required impurity: better than 10⁻⁶
- Initial impurity without purification
 - depends on Linac condition

- 10⁻³ to 10⁻⁴

 Even if the initial impurity is satisfactory, impurity is getting worse and worse during the users operation without purification.

Purification using the tune shift conventional method

- vertical tune dependence
 - main bunch >> unwanted bunches
 - typically 10kHz (frev=1.6MHz, fby=450kHz) at PF
- Advantage
 - Simple, Easy
 - cheap

Nonlinear effect

- In 1998, low emittance operation was started
 160 nm rad -> 30nm rad
- Nonlinearity of restoring force requires powerful KO
 - single frequency cannot kick out the beam
 - we must sweep KO frequency
- Tune spread is larger than tune shift

conventional method is not satisfactory

Gated RF-KO

Gated RF knock-out (RF-KO)

Wide system bandwidth is required

 fast pulse, wideband amplifier, etc
 precise timing

Block diagram of the system

Stripline Kicker

• length = 45cm

Beam Test

- Gate pulse width 50ns
- Multi bunch (partial fill)

Bunch Gap

628ns(revolution)

Beam Test

3 sucsessive bunches

Before kick

After kick

Result: photon counting

Typical purity measurement

purity measurement during users operation (S. Kishimoto)

Impurity growth in PF-AR

- Purify at Injection Energy of 3GeV
 - No purification after the energy ramp up (6.5GeV)
- Even in the high energy machine, impurity growth is obvious!!

Just after injection 2003/06/28 18:50

6 hours later 2003/06/28 25:00 Impurity growth of the 1st bunch

• 10:00 -> 17:00

2ns = 80ch
 (25ps/ch)

Impurity

- baseline offset: 2.5x10⁻⁵
 - actual impurity is better than 1x10⁻⁶ at the start time
 - noise source: tail of the mair bunch
- Growth rate: 1.5x10⁻⁷ / min

calculation of impurity growth

paramet

parameter :	Beam Energy Harmonic number Revolution freq. Energy loss per turn Effective voltage Momentum compact. Damping Time	E0 = 6.5 h = 640 f0 = 794.7 U0 = 6.66 Vc = 15.2 alp = .0126329	GeV kHz MeV MV
		X = 2.49 Y = 2.47 Z = 1.22	ms ms ms
	Emittance	X = 2.94E-7 Y = 1% coupling	
natural	Energy spread Bunch Length	1.14E-3 16.7	mm
use fixed_value	lb Particles/bunch	50 3.9E11	mA

Mechanism of impurity growth

- aperture of the opening of the bucket is calculated by solving the differential equation numerically (matlab)
- Touschek Lifetime is estimated by ZAP

$$\frac{d\varepsilon}{dt} = \frac{eV_0}{TE_0}\sin(\phi_0 - \phi) - \frac{U_0}{TE_0} - \frac{2}{\tau_{\varepsilon}}\varepsilon$$
$$\frac{d\phi}{dt} = -h\omega_0\alpha\varepsilon$$

$$(\varepsilon = p / p_0)$$

result (calculation)

- Opening of the bucket is one order of magnitude larger than that of PF-2.5GeV ring
- estimated impurity growth: 1.88×10⁻⁷ [/min]
- measured impurity growth: 1.5×10⁻⁷ [/min]
- difference:
 - fixed bunch length
 - coupling

1st Bucke	et	
	Lower limit	1.833717647E-2
	Higher limit	1.844003784E-2
	delta P	<u>1.0286137E-4</u>
	Tauschek rate	6.2523E-9 [/sec]
2nd Buck	et	
	Lower limit	2.449095951E-2
	Higher limit	2.457326718E-2
	delta	0.8230768E-4

How to purify in 6.5 GeV???

- We must purity during 6.5GeV user run!
- Monitor
 - Open/Close Beam shutter from control room...finished
 - automated measurement.....not finished.
- Kicker
 - move stripline kicker location where the vertical betatron function is larger than the present value...finished
- Amplifier
 - More Power!!
 - However, budget for the amplifier is not approved yet.
- Usage of scraper, Local bump,
 - We can kick unwanted bunches if the lifetime of the main bunch is decreased....
- Skew Q magnet, RF voltage, Linear optics.....