March. 1, 2005

Core-university Seminar

A Project of Sub-picosecond Light Pulse Generation from the SPring-8 Storage Ring

T. Nakazato

SPring-8

Contents

- •Principle and concept design of a short pulse generator.
- •Pulse width and extraction efficiency.
- •Beam loss by the short pulse generator.
- •Phase noise of RF system at SP8.
- •R&D
 - 1)Phase stability & vibration measurement at KEK : basic data for system design.2)Fast 300kW phase shifter.

Generating a short light pulse from a bunch at Spring-8

Storage Ring Parameters (1) (common for 4 & 8 GeV)

1.5 mA (single bunch operation)

100mA (multi bunch operation)

•Stored current (I_{beam})

•Bunch population (N_b)	4.48×10^{10}
•Bunch charge (Q _b)	7.18×10^{-9} Coulomb
•Betatron tune (v_x/v_y)	40.15/18.35
•Coupling constant(κ)	0.1%
•RF frequency (f _{rf})	$508.58~\mathrm{MHz}$
•RF Voltage (V_{rf})	$16 \mathrm{MV}$
•Harmonic number (h)	2436
•Revolution Frequency (f_{rev})	$208.8 \mathrm{kHz}$
•Momentum compaction factor (α)	1.46×10^{-4}
•Bending radius (ρ)	39.2718 m
•Longitudinal impedance $(Z_{//}/n)$	0.200

Storage Ring Parameters (2)

Electron beam energy	Ε	↓Scale	4.0	8.0	GeV
Lorentz factor	γ	$\propto E$	7.83	15.66	$3 imes 10^3$
Emittance	E _x	$\propto E^2$	0.75	3.0	nmrad
	${\cal E}_{p}$	$\propto E^2$	0.75	3.0	pmrad
Beam size * 1	σ_x	$\propto E$	140	280	µm * 2
	σ_{y}	$\propto E$	3.3	6.5	µm * 3
Beam divergence *1	$\sigma_{x'}$	$\propto E$	5.9	12	µrad
	$\sigma_{y'}$	$\propto E$	0.23	0.46	µrad
Bunch length * 4	σ_t	* 5	17	21	psec (1o)
			41	50	psec (FWHM)
Momentum spread	$\sigma_{\mathfrak{p}}/p$	$\propto E$	0.055	0.11	%
Peak current * 4	I _{peak}	* 5	167	137	А

*1:at the center of long straight sections.

*2: $\eta_x \sigma_y / p$ is included.

*3: $\eta_{\nu} = 0$ is assumed.

*4:single bunch operation at $I_{a\nu}$ =1.5mA.

*5:not a simple function of E.

Light spectrum for 100% efficiency

 6.3×10^8 (4GeV) or 1.7×10^8 (8GeV) for the 1st order peak.

Light Pulse Width and Extraction Efficiency

$$\sigma_p^2 \approx \sigma_{p0}^2 + \frac{\pi}{3} \frac{h \Sigma'_y L_{12}}{\tan^2 \theta_{tilt}} \eta \quad (\text{ for slit #1 width << h})$$

 $\sigma_{p0} = \frac{\sigma_y^*}{\tan \theta_{tilt}}$ $\frac{1}{L_{12}} = \frac{1}{L_1} - \frac{1}{L_2}$

Asymmetric-cut crystal will improve the efficiency!

 L_1, L_2 : Distance from emission point to the slit #1 and #2. \sum_{v} : Width of radiation angular distribution.

 \uparrow shows $2\sigma_{p0}$ for standard undulators.

RF parameters (preliminary)

300kW fast phase shifter

Case A High power phase shifter Fed by same generator

Case B Low power phase shifter Fed by different generators

Special Thanks to...

Prof. Hosoyama + Crab Cavity Group, KEK KEKB SCC Group