Nuclear Resonant Scattering (NRS) and its Applications using pulsed SR

Feb 28, 2005 Dr. Zhang Xiaowei

Why Nuclear Scattering using Synchrotron Radiation?

- 1) Obtain an ultra-monochromatic x-ray beam: a frontier of energy resolution
- 2) Develop some new experimental techniques: inelastic, quasi-elastic x-ray scattering
- 3) Develop new possibility of traditional Mössbauer spectroscopy
- 4) Develop applications of ultramonochromatic x-ray beam: x-ray wavelength standard

γ-ray vs. synchrotron radiation

	γ-ray	SR
Energy bandwidth	10 ⁻⁸ eV	10 ⁻³ ~10 ⁻² eV
Relative brilliance	1	>10 ⁵
Polarization	poor or difficult	ideally
Pulsed radiation	difficult	ideally
Energy tunability	ΔE~100µeV	ideally

Overcome a huge S/N

technique	Signal (Nuclear scattering)	Noise (Electric scattering)
Time gated detection	Time-delayed response	Prompt response
Polarization dependence	M1, E2	E1
Specialized optical device	allowedly	forbidden

Ultra-monochromatic x-ray beam can only be obtained from a nuclear system in $\Delta E/E$ solid, can not be obtained 10^{-0} from any electric systems. 10^{-1}

Resolutionpowerof 10^{-3} diffraction lattice is limited by 10^{-4} error of $\Delta d/d$. 10^{-5}

10-2

 10^{-6}

10-13

10-7 Nature of nuclei frequency 10-8 in range resonance x-ray 10-9 (Mössbauer resonance) is a 10-10 technique of Ultrakey **10**-11 monochromatic x-ray beam. 10-12

To separate nuclear resonant 10^{-14} signal from electric scattering, 10^{-15} the difference in behavior of pulse response is utilized.

x-ray 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} eV 10-19 filter/ NaI detector tuner 10-18 SSD multilaver.grating 10-17 10-16 crystal diffraction 10-15 10-14 10-13 high-resolution 10-12 Blank 10-11 SR 10-10 Dopplar shift 10-9 10-8 Mössbauer 10-7 spectros filter 10-6 10-5

Scale of energy resolution

principle and operation in Electromagnetic Waves Spectroscopy $c = \lambda \nu, k = 2\pi/\lambda, \omega = 2\pi \nu$

wave length (m)

operates on $k = \omega / c$ in high frequency range.

Frequency tuning in radio-wave band

Spectrometer for light or x-ray

3-dimensional view of light source

Few bunches \Rightarrow High-brilliance in time domain

Correlations between NRS in energy domain and time domain

Comparing nuclear resonance in 3 worlds

Nuclear resonant absorption spectra in energy domain (Mössbauer spectra)

Nuclear resonant response for short x-ray pulse (Quantum beats)

Fourier transformation of quantum beats (Power spectra, energy difference between energy levels)

Develop a new experimental technique

First result of inelastic NRS

FIG. 4. Energy spectrum of nuclear resonant scattering from a polycrystalline α -⁵⁷Fe foil. The distance of the iron foil from the detecting plane of the APD detector was 2 mm. This is the same as in Fig. 2(b), except that the intensity scale is magnified and the sum of calculated multiphonon terms ($2 \le n \le 12$) convoluted with the resolution function is shown as a dashed line. The accumulation time was converted to the value when the current of the AR was 26 mA. See also the caption of Fig. 2.

Develop new applications of traditional experimental technique

Nagy D., et al , Synchrotron Mössbauer Reflectometry in Materials Science, In: Mössbauer spectroscopy in Materials Science, Eds. Miglieni, M. and Petrids, D. (Kluwer Academic Publishers, Dordrecht, 1999) p323-336.

Control x-ray penetration depth

20 nm ⁵⁷Fe film on glass, heated at 285°C for 4 hrs. Magnetic fields of 0.37 T

Time domain spectra were drastically changed by adjusting applying the incident angle.

conclusion

- 1) not a simple short bunch, but **high-brilliant** short pulse
- 2) NRS technique brings us a new energy resolution frontier in x-ray region
- 3) NRS technique combines with pulsed SR let us be able to do something new where the traditional Mössbauer spectroscopy can not do