Quasi-Isochronous (Low-Alpha) Operation and Observation of CSR at NewSUBARU

Y. Shoji LASTI, University of Hyogo

Low AlphaY. Shoji, S. Hisao*, T. Matsubara**studentsNegative AlphaA. Ando, S. Hashimoto*studentsCSRAndo, Hashimoto, ShojiSPring-8 (Accelerator)T. NakamuraSPring-8 (Accelerator)T. TakahashiKyoto UniversityH.Kimura, T.Hirono, K.Tamasaku, M.YabashiSPring-8 (Beam Line)

Where is NewSUBARU?

1 GeV linac Spring-8 SR

Circumference	118.7 m
Injection Energy	1.0 GeV
Electron Energy	0.5 - 1.5 GeV
Type of Bending cell	DBA with Inv.B
Number of Bending Cell	6
RF Frequency	499.956 MHz
Maximum Stored Current	500 mA
Natural Emittance	38 nm (1GeV)
Natural Energy Spread	0.047% (1GeV)

Basic Idea of Low Alpha

* Quasi-isochronus = small momentum compaction factor (α)

$$L/Lo \equiv 1 + \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$

$$\delta \equiv (E - E_0)/E_0$$

- * Small $\alpha_1 \rightarrow \text{short bunch}$ $f_S = \alpha_1^{1/2} (eV_{RF}^2 - U_0^2)^{1/4} (h/2\pi E)^{1/2} f_{REV}$ $\sigma_T = \alpha_1^{1/2} (eV_{RF}^2 - U_0^2)^{-1/4} (E/h)^{1/2} (\sigma_E / f_{REV})$ f_S is used to estimate α_1
- * High $V_{\rm RF}$ is another way to compress the bunch
- * Linear Factor α_1

 $\alpha_1 = (1/Lo \int (\eta/\rho) ds$

 $\alpha_1 \approx 0$ requires negative η section --- Break achromat or negative ρ section. --- Invert bend

Control of α_1 ; Invert Bend

Change η in the invert bends --> change α_1 keeping achromatic condition

34° -8° +34° =60°

LASTI

Two Q-families are used

Second Order Factor α_2

Sextupole & chromaticities

 α_2 control is the essential part of $\alpha_1 \approx 0$ operation

 $\Delta \alpha_2 = (1/2L_0) \int \eta_1^3 \Delta K_2 ds \quad \text{synch. tune} \\ \Delta \xi_x = -(1/4\pi) \int \eta_1 \beta_x \Delta K_2 ds \quad \text{horizontal tune} \\ \Delta \xi_y = (1/4\pi) \int \eta_1 \beta_y \Delta K_2 ds \quad \text{vertical tune}$

$$K_2 = (1/B_0\rho_0)(\partial^2 B_y/\partial x^2)$$

This Sextupole family controls α_1

$$\alpha_2 = 0$$

 $\xi_X = -1.7$
 $\xi_Y = -7.7$

 $f_{\rm RF}$ dependence of $f_{\rm S}$ is measured to confirm that $\alpha_2=0$

Result(1); Bunch Shortening

Reduce α_1 The σ_T is reduced according to $\sqrt{\alpha_1}$ scaling low ($\alpha_1 > 2x10^{-5}$) Minimum length was 1.4ps

ASTI

Low current $I_B < 2uA/bunch (0.4mA)$ No current dependent lengthening

At $\alpha_1 < 2x 10^{-5}$ Reduction of α_1 did not reduce σ_T . Raise of V_{RF} reduced σ_T .

Resolution of the monitor was not the reason of the limitation.

We will come back to this problem after some sheets

Result(2); CSR(Coherent Synchrotron Radiation)

INSTI

Integration of power up to 35cm⁻¹

KEK 2005.03.01

Result(3); CSR modes

Result(4); CSR Spectrum

KEK 2005.03.01

Result(5); Bunch compression by V_{RF}

Beam Dynamics Interests

LASTI

Two Main Subjects		
Low Current>	Quasi-isochronous limit (This presentation)	
Current Dependence>	Instability	(MWI, CSR
	Form factor	(potential well distortion)
Some theoretical predictions on the l Limitation from the finite α_2 old a Longitudinal Radiation Excitation Synchro-beta coupling Linear coupling Second order		imit and practical problem Y.Shoji <i>et al.</i> , PR-E 0.06 ps Y.Shoji, PR-STAB 0.2 ps E. Forest, $\Delta \delta = 0.7 \sigma_{EN}$

More practical problem --- stability RF noise Magnet ripple

. . . .

BESSY-II; Leading machine

* Achieved at BESSY II

shorted bunch 0.7 ps rms steady state coherent radiation at low alpha

* What were their problems?

"The phase noise of the master oscillator and of the 250MHz fast sweep voltage ... these noise sources add a random contribution of \approx 2.4ps to the bunch length." (M. Abo-Bakr, *et al.*, PAC03)

"Presently there is a limit by 300Hz noise, visible on the longitudinal beam signal,.." (J. Feikes, *et al*,, EPAC2004)

".. a relative current change of the Q4-family .. of 10⁻⁴ produces a CSR power change of 25% "(J. Feikes, *et al*, Beam Dynamics News Letter 35)

"A tiny change of the sextupole, the last figure of the setting panel by just a few, destroys the beam condition" (G. Wuestwfeld)

Parameters of BESSY II and NewSUBARU

ΛST		BESSY II	NewSUBARU
	Natural Energy Spread	0.08%	0.047%
	Natural Emittance (nm ra	ad) 30π	30π
	α_1	-1.4x10 ⁻⁶	5x10 ⁻⁶
	α_3	-0.01	0.9
	Damping time	8ms	12ms
	Lattice no	on-achromatic DB	DBA+IB
	Time jittering at Streak C	2.4ps	0.4ps

(4) Practical limitations from the magnet

".. a relative current change of the Q4-family .. of 10⁻⁴ produces a CSR power change of 25% (J. Feikes, et al, BESSY, Beam Dynamics News Letter 35)

Setting resolution of Q-magnet (16 bit, stability=10⁻⁴/8h)

Q4 Setting resolution = 1 bit $\rightarrow \Delta \alpha_1 = 4 \times 10^{-6}$ Fine adjustment is possible using other Q magnets

Setting resolution of Sext-F (12 bit, stability= $10^{-3}/8h$) Setting resolution = 1 bit --> $\Delta \alpha_2 = 2.6 \times 10^{-3}$

Fine adjustment is possible using other S magnets

Large enough RF bucket α_3

 $d[L/Lo]/d\delta > 0$ be satisfied for all δ

---> $\alpha_1 + 2\alpha_2\delta + 3\alpha_3\delta^2 > 0 \longrightarrow \alpha_2^2 - 3\alpha_3\alpha_1 < 0$ $\alpha_2 = 2.6 \times 10^{-3}, \alpha_3 = 0.9 \longrightarrow \alpha_1 > 2.5 \times 10^{-6} (\sigma_{\tau} > 0.5 \text{ ps})$

Field Ripple is also important

(5) The α_3 -- Another essential part

The α_3 makes stable RF bucket for large δ

The α_1 and α_3 should have same signs. --> enough RF bucket When α_1 and α_3 have opposite sign --> short life time

Large α_3 enlarges tolerance of α_2 Large α_3 with the energy spread effectively enlarge α_1 $d[L/Lo]/d = \alpha_1 + 2\alpha_1\delta + 3\alpha_3\delta^2$ $\alpha_3 = 0.9$ $\sigma_{EN} = 0.047\%$ (natural spread) $<3\alpha_3\delta^2 > =6\alpha_3\sigma_{EN}^2$ $\Delta\alpha_1 = 1.2X10^{-6}$

(6) Coherent Longitudinal Oscillation

Longitudinal oscillation $[\Delta \tau]/[\Delta \delta] \propto \alpha_1^{1/2}$

At low alpha, the energy deviation by the coherent oscillation becomes large.

Two kinds of oscillation

NSTI

on-resonance oscillation induced by a broad-band noise out-of resonance oscillation at harmonic components of the primary line (60Hz)

Low frequency; dX signal

Effect of Slow Oscillation ; Simulation

Beam parameters

E	1GeV
$ au_{\epsilon}$	11.4 ms
α_1	5x10 ⁻⁶
α_3	0.9
V _{RF}	300kV
f_S	547Hz
$\sigma_{\rm E}/{ m E}$	0.48x10 ⁻³
$\sigma_{\rm T}$	0.69 ps

external perturbation f_{EXT} 126Hz amp \pm 10Hz (24ps)

number of particles 1000

Circumference Feed-Back

A dipole error produces a longitudinal oscillation

Dipole error at dispersive sections changes circumference $\Delta L = \theta_{ERR} \eta_{ERR}$ The response of COD to θ_{ERR} is

 $x = \left[\sqrt{\beta/2\sin\pi\nu}\right] \sqrt{\beta_{ERR}} \,\theta_{ERR} \cos\left[\left|\psi - \psi_{ERR}\right| - \pi\nu\right] - (1/\alpha_1) \,(\Delta L/L_0) \,\eta$

In small α_1 ring, the second term is dominant.

NSTI

dX has high sensitivity -- good diagnostic of a longitudinal oscillation

$$\tau = \frac{(2\alpha_{E} + j\omega)\Delta_{C} - \omega_{S}^{2}\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t} \quad \varepsilon = (\frac{\omega_{S}^{2}}{\alpha})\frac{\Delta_{C} + j\omega\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t}$$

Active feed back to the dipole magnet reduces longitudinal oscillation-- good for a slow feed-back

Circumference Feed-Back; test

A dipole steering is used to reduce longitudinal oscillation

Dipole error at dispersive sections changes circumference

LASTI

Resonant Oscillation

Reduce Oscillation by Low level phase feed-back In operation at SPring-8 (T. Ohshima, PAC2001) The similar effect also at NewSUBARU (Y. Kawashima, Y. Shoji)

T.Ohshima, PAC 2001

Figure 5: The measured beam position spectrum.

Unknown Process

Synchrotron Oscillation is enhanced at $\delta > 0$

The bunch length was not always shortest at where the f_S was the smallest. It strongly depended on δ (or Δf_{RF}) at small α_1 ($\alpha_1 = 1 \times 10^{-5}$).

bunch shape. FFT spectrum of the beam signal

Measured bunch length and CSR

Bunch length vs *f*s 2004/06/13 $\alpha_1 = 5 \times 10^{-6}; I_B = 40 \mu A V_{RF} = 120 kV$

INSTI

CSR power vs fs2004/12/14 $\alpha_1 = 1 \times 10^{-5}; I_B = 500 \mu A; V_{RF} = 120 kV$

Beam Dynamics Interests Again

Coupling of

Longitudinal Oscillation & dispersion at RF cavity -----> synchro-beta resonance shift of circumference <----- c.o.d. timing spread at *H* is not 0 <----- betatron oscillation spread of circumference <----- chromatic tune spread

Transversal Oscillation

energy displacement δ -----> horizontal displacement $dX = \eta \delta$

Requires High Stability& Low Noise

synchrotron frequency	300-800 Hz or less
damping time,	100Hz
harmonic noise of primary line	60Hz - 720Hz

Non-linearity of RF bucket

the linear part is extremely small, the second order term is almost zero

StreakCamera ; Bunch Length Measurement

Observation of CSR ---Bolometer

A bolometer is set at the line for a beam diagnostics

chopping frequency 10Hz Inside filter 35cm⁻¹ Spectrum -- interferometer

(1) Longitudinal Radiation Excitation

A stochastic fluctuation of where the photo-emission takes place produces a fluctuation of RF phase and enlarges the equilibrium bunch length. Because of this radiation excitation the bunch length cannot be larger than

$$\sigma_{TI} = T_0 \sigma_{EN} \sqrt{I_{\alpha}}$$

at any locations of the ring. This is the intrinsic limit of a storage ring determined only by T_0 (revolution period), σ_{EN} (natural energy spread), and I_{α} (a variance of partial momentum compaction factor: α^*).

$$I_{\alpha} = \langle \alpha^*(s) - \langle \alpha^*(s) \rangle \rangle^2$$
, $\alpha^*(s) = (1/L) \int_{s}^{L} (\eta/\rho) ds$

In NewSUBARU, at 1GeV $\sigma_{TI} = 0.06 \text{ ps} --- \text{ small}$

(2) Linear Coupling with Betatron Motion

An electron in a storage ring passing through bending magnets at the outer side or inner side of a central orbit according to its betatron oscillation amplitude and phase. It makes a deviation in the path length and produces a bunch lengthening.

١T

(3) Higher Order Coupling

A contribution of betatron oscillation to the circumference

 $\Delta L \approx \pi \varepsilon_X \xi_X \qquad (E. \text{ Forest})$ This shift of $\Delta L/L$ is cancelled out by an energy shift δ $(\Delta L/L) = -(\alpha_1 \delta + \alpha_3 \delta^3)$. **NewSUBARU** $\varepsilon_X = 3 \times 10^{-8} \text{m} \text{ (natural emittance)}, \quad \xi_X = -1.7, \quad \alpha_1 = 4 \times 10^{-6}$ $\Delta \delta = 0.033\% = 0.7 \quad \sigma_{EN}$ $--> \xi_X \text{ should be under control (accuracy is not required)}$ A shift of the synchronous phase ϕ_S $\Delta \phi_S = \tan \phi_S [k \ \beta_{RF} \varepsilon_{CSI} / 4 - (2+D)\delta] --- \text{ negligibly small}$

Forced Longitudinal Oscillation

Forced Coherent Synchrotron Oscillation

$$\frac{d\tau}{dt} = -\alpha\varepsilon + \Delta_{C}e^{j\omega t}$$
$$\frac{d\varepsilon}{dt} = \frac{\omega_{S}^{2}}{\alpha}(\tau + \Delta_{P}e^{j\omega t}) - 2\alpha_{E}\varepsilon$$

$$\tau = \frac{(2\alpha_{E} + j\omega)\Delta_{C} - \omega_{S}^{2}\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t}$$
$$\varepsilon = (\frac{\omega_{S}^{2}}{\alpha})\frac{\Delta_{C} + j\omega\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t}$$

Phase Noise Δ_P ; on resonance

 $\tau_{MAX} = (\omega_s/2\alpha_E)\Delta_P$

small for small ω_s $\varepsilon_{MAX} = [\omega_S^2/\alpha)/(2\alpha_E)]\Delta_P$ no dependence on ω_S if V_{RF} is constant

Phase Noise Δ_P ; $\omega << \omega_S$

 $|\tau| \approx \Delta_{\rm P}$ $|\varepsilon| \approx \omega / \alpha \Delta_{\rm p}$

no dependence on ω_s neither on α_1 large at low α_1 (small ω_s)

Harmonic Oscillation

"Presently there is a limit by 300Hz noise, visible on the longitudinal beam signal,.. (BESSY, EPAC2004)"

Noise Source -- Phase noise of RF power?

LASTI

dX signal depends on a_1 -- longitudinal oscillation

Resonant Oscillation

Noise Source -- Phase noise of RF power Relative height of the f_s side-band of RF frequency. Width ; constant =80Hz

$f_{\rm S}$ dependence; 10dB/Oct

6dB/Oct from the basic eq. 4dB/Oct *f* dependence of the noise

V_{RF} dependence of phase noise

A noise of the phase detector has an input power dependence.

Is it correct that the main noise source is the phase detector?

Correction of Phase Jittering

"The phase noise of the master oscillator and of the 250MHz fast sweep voltage ... these noise sources add a random contribution of ≈2.4ps to the bunch length. " (BESSY; M. Abo-Bakr, et al., PAC03)

Effect of phase jitter

Compare the measurements in 1s and in 1/30s. $\sqrt{(\sigma_{1S}^2 - \sigma_{1/30S}^2)}$, was 0.3

Correction of phase jitter

22 measurements with 0.1 ms gate. (~20 photons/measurements) Shift them by their peak positions and make a sum of 22 profiles $\sqrt{(1.48^2 - 1.53^2)} \approx 0.4$ ps.

Testing New Phase Detector

Present System 3 NIM modules

Hand-maid module

Noise Level of output signal

by Y. Kawashima (SPring-8)

Negative α_1

Potential well distortion --> deformation of bunch

 $\alpha_1 > 0$; Gauss --> parabolic

IVSL

 $\alpha_1 < 0$; Gauss --> rectangular (better form factor)

We could not see the threshold of CSR (~5mA).

Bunch length vs. current

A. Ando, 2005 ann. meeting of Japanese Society for Synchrotron Radiation Research

power spectrum of longitudinal oscillation

How to identify the noise source

Forced Coherent Synchrotron Oscillation

$$\tau = \frac{(2\alpha_{E} + j\omega)\Delta_{C} - \omega_{S}^{2}\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t} \qquad \varepsilon = (\frac{\omega_{S}^{2}}{\alpha})\frac{\Delta_{C} + j\omega\Delta_{P}}{\omega_{S}^{2} - \omega^{2} + 2j\omega\alpha_{E}}e^{j\omega t}$$

The ratio, τ/ϵ is different for a different noise source

Phase noise; Δ_P RF control Circumference noise; Δ_C Magnet ripple $\tau/\epsilon = j\alpha_1/\omega$ $\tau/\epsilon = (2\alpha_E + j\omega)(\alpha_1/\omega_S^2)$ $= (j\alpha_1/\omega)(\omega/\omega_S)^2 + 2\alpha_E \alpha_1/\omega_S^2$

By the measurement of τ and ε at the same time, we can identify the noise source.

KEK 2005.03.01

Non-linear bucket with phase noise

SUMMARY

Present Status at NewSUBARU

*The ring reaches to the bunch shortening limit at $\alpha_1 \approx 2 \times 10^{-5} (1.4 \text{ ps})$ *Burst mode and steady state CSR is observed.

Progressing R&D at NewSUBARU

*Mechanism which limited bunch shortening at NewSUBARU *Negative α_1 (understand form factor, MWI) *A beam line for the observation of CSR

More R&Ds

*Maximum current for users, Thresholds of instabilities *Refinement of parameter (test of IB-in-gap sextupole) *Make the machine more stable *Low and High Energy Operation

• • • •