ビームライン・実験装置 評定表

<table>
<thead>
<tr>
<th>評価事象</th>
<th>適切</th>
<th>やや適切</th>
<th>適切</th>
<th>やや不適</th>
<th>不適</th>
</tr>
</thead>
<tbody>
<tr>
<td>適切に保存、整備されて、本来あるべき性能を発揮しているか</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 ソル性能を発揮</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>取扱は容易か</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>取扱説明書は整備されているか</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

ビームラインの性能等について
- 名古屋工業大学・虎谷研のS型課題で立ち上げられ、協力ビームラインとして運営される。B Lの調整およびユーザー教育すべて虎谷研に依頼している。
- 粉末X線回折測定の高精度化のための研究を推進している。
- 6個の検出器を放送形にそなえた多点式回折計がユニークである。

改良・改善すべき点
- 4B1とのタグナダー使用による問題点、例えば、ビームライン切り替え時リミーが大気にさらされることによる汚れの付着など、解消すべき点がある。
- X線のフラックスが不足し、測定に時間がかかる。

実験手法のビームラインとの適合性・研究成果について
- 評価手法のビームラインとの適合性・研究成果について
 - 手法a
 - 適合性（※1）: 5. 最適 4. 適切 3. 妥当 2. やや不適 1. 不適
 - 研究成果: 5. 極めて高 4. 高 3. 妥当 2. やや低 1. 低
 - コメント: 粉末X線回折による構造解析手法の開発を行っており、現在、新たな回折装置の立ち上げ、解析ソフトの整備を行っている。
 - 手法b
 - 適合性（※1）: 5. 最適 4. 適切 3. 妥当 2. やや不適 1. 不適
 - 研究成果: 5. 極めて高 4. 高 3. 妥当 2. やや低 1. 低
 - コメント: 改善すべき点
 - 手法c
 - 適合性（※1）: 5. 最適 4. 適切 3. 妥当 2. やや不適 1. 不適
 - 研究成果: 5. 極めて高 4. 高 3. 妥当 2. やや低 1. 低
 - コメント: 改善すべき点

総合評価
- 実験結果のトータル評価
- 評価結果は有利であるが、1試料20100度を測定するのに1日程度かかるのはやや不満である。
- 装置の改良、工夫がされているが、1試料20100度を測定するのに1日程度かかるのはやや不満である。
実験装置の性能等について

<table>
<thead>
<tr>
<th>使用している実験装置名(a)</th>
<th>マルチディテクター粉末回折システム</th>
</tr>
</thead>
<tbody>
<tr>
<td>適切に保守、改善されて、本来あるべき性能を発揮しているか</td>
<td>使用している実験装置名(b)</td>
</tr>
<tr>
<td>取扱は容易か</td>
<td>適切に保守、改善されて、本来あるべき性能を発揮しているか</td>
</tr>
<tr>
<td>取扱説明書は整備されているか</td>
<td>取扱は容易か</td>
</tr>
<tr>
<td>性能、仕様等で特記すべき点</td>
<td>性能、仕様等で特記すべき点</td>
</tr>
</tbody>
</table>

使用している実験装置名(b)

<table>
<thead>
<tr>
<th>適切に保守、改善されて、本来あるべき性能を発揮しているか</th>
<th>取扱は容易か</th>
</tr>
</thead>
<tbody>
<tr>
<td>取扱説明書は整備されているか</td>
<td>使用している実験装置名(b)</td>
</tr>
<tr>
<td>性能、仕様等で特記すべき点</td>
<td>適切に保守、改善されて、本来あるべき性能を発揮しているか</td>
</tr>
</tbody>
</table>

今後のビームラインのあり方について

<table>
<thead>
<tr>
<th>今後の計画の妥当性 について</th>
<th>今後5年間に</th>
</tr>
</thead>
<tbody>
<tr>
<td>その後今後の計画に付いての意見</td>
<td>高温および低温測定のための装置開発を行うことにより、本装置の応用範囲を広げることが必要がある。また、タウベの産業化もユーザー数の増加によっては、将来的に考えられる課題であるかもしれない。粉末回折は汎用性が高く、本来放射光実験のニーズが高い側であるが、ユーザーが増えているとの現状にかかわる予測がその必要な理由で考えられる。ソースのさらなる高輝度化が見込める。今後のB.Lの運営に関して、SprigeBでの数値のビームラインなどの関係などを明確化するために、現在S課題であるにもかかわらず、実用的な追加を模索し将来ユーザーよも広げるための努力を行うこと、将来的には必要である。</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>高い優先度で予算投入予算投入</th>
<th>現状維持</th>
</tr>
</thead>
</table>