

XAFS法の長所と短所		
	-	
	長所	短所
対象元素	(原理的には)全元素	
対象相	(原理的には)相問わず 気液固相、相界面	現実的に天然物では 気相×、液相△
天然物(固 体)への適用	元素選択性・感度高い 大気圧下での測定可 前処理不要(<i>in-situ</i>)	感度:数10 ppm程度 (蛍光測定での他元素の干 渉に依存)
その他	原理単純 → 応用性高い	放射光が必要

試料の最適厚さー透過法

蛍光法の測定

Thickness effect

$$\begin{split} \widetilde{\chi} &= S_f \chi \\ \hline S_f &= 1 - \frac{\mu_r}{\mu_t} + \frac{\mu_r}{\mu_t} \frac{\mu_t t \csc \theta}{\exp(\mu_t t \csc \theta) - 1} \\ \mu_t &= (\mu_b) + (\mu_r) \frac{\mu_t t \csc \theta}{\frac{\pi}{2} \times 10^{5} \text{ s} \text{ s}} \\ \mu_t &= (\mu_b) + (\mu_r) \frac{\pi}{2} \times 10^{5} \text{ s} \text{ s}$$

大一ジェ電子の脱出深度
Schroederの経験式 (Schroeder et al., 1996)

$$\begin{aligned}
& P(x) = 0.76 \cdot (1 - \frac{2 \cdot x}{R_B}) \cdot \exp(\frac{-2.7 \cdot x}{R_B}) \\
& P(x): 電子が脱出できる確率 \\
& P(x): 電子が脱出できる確率 \\
& R_B: Bethe range X: 電子の発生深度
\end{aligned}$$

$$\begin{aligned}
& R_B = \frac{M}{785 \cdot \rho \cdot Z} \cdot \int_{E_A}^{40eV} \frac{E}{\ln(J/[1.166 \cdot (E+0.85 \cdot J)])} dE \\
& \rho: 化合物の密度 \\
& M: モル質量 \\
& J: 第 - (T + T) + (T + T)$$

