

_{先端研究施設共用促進事業} フォトンファクトリーにおける産業利用促進

課題番号: 2012I004
研究責任者: 蛇石貴宏、住友林業株式会社
利用施設: 高エネルギー加速器研究機構 放射光科学研究施設 BL-14B
利用期間: 2012年10月~2013年9月

木材の炭化・腐朽・蟻害による断面欠損の整理 Arrangement of the cross-sectional deficit by carbonization, decay, and termite damage of wood

蛇石 貴宏¹、小椋 健二¹ Takahiro Hebiishi¹, Ogura Kenji¹

¹住友林業株式会社 ¹Sumitomo Forestry Co., Ltd.

<u>アブストラクト</u>: 炭化・腐朽・蟻害による木材内部の断面欠損を可視化するために、木材片の CT 測定を行い、入射エネルギーや光学素子などを最適化することによって木材断面画像の測定方法を確 立した。3次元データで早材・晩材の密度差、炭化・腐朽に伴う密度低下を確認、CT 測定による内 部構造変化分析の有用性を確認した。大型試料については測定領域を分割する方法で CT 測定を行っ たが、十分な再構成画像を得られておらず今後の課題である。

In order to visualize the cross-sectional deficit inside the wood caused by carbonization, decay, and termite damage, CT measurement of the wood piece was performed and the measuring method of the wood section picture was established by optimizing incidence energy, an optical element, etc. By analyzing the three-dimensional data measured by CT measurement, the difference in the density of early wood and late wood were observed and the density loss caused by carbonization and decay were also observed. The usefulness of internal structure change analysis was confirmed. Although CT measurement was performed by the method of dividing a measurement domain about a large-sized sample, sufficient reconstruction picture cannot be obtained but it is a future subject.

<u>キーワード</u>: 位相・屈折・吸収イメージング、炭化、腐朽、蟻害

<u>1. はじめに</u>:

1-1. 研究の背景

建築業界において木材は、内装材や構造材と してこれまで利用されてきた。近代以降木造建 築としては、住宅等小規模な建築が代表的なも のとなっているが、建築基準法の改正や行政に よる木材の積極的な利用促進によって、近年は 中・大規模な木造建築が増加してきている。

一方、木材に対する各種劣化対策は、木材業 界・建築業界でこれまで取組まれてきた。しか し、中・大規模建築への木材利用にあたり、木 材を構造躯体として意匠的に現しながら、防火 性能を高めたり、高い耐久性が必要となる屋外 で木材を化粧材として利用したり、性能の要求 が厳しい部位・方法で、木材を積極的に活用す る新しい利用のされ方が増えており、これまで にない性能の要求や課題が現れてきている。 今 後の木造建築の発展には、これらの要求性能や 課題に対して、技術的な改善を図る必要があり、 そのためにはより詳細な検討が必要となってき ている。

1-2. 研究の目的

本研究では、木造建築の木材に求められる性 能のうち、防耐火・耐久(腐朽・蟻害)に対す るより詳細な検討を実施するために、炭化・腐 朽・蟻害に起因する内部割れ等の可視化・断面 欠損度合いを定量的に整理するための解析手法 の開発を目的とする。

1-3.研究の目標

解析対象となる材料密度・厚さの異なる木材 を可視化するための測定方法を確立し、測定に 要する時間などの条件を把握する。具体的には

・密度0.1~0.8g/cm³の範囲の木材について
 0.01 g/cm³程度の密度差を識別し、空間分解能
 <1mmとなる画像を取得できることを示す。

・100~600mm角、長さ1~3mの材料への拡張可

能性を示す。

<u>2.実験</u>:

2-1. 試料

本研究ではスギ、カラマツ等7種の木材に炭化、 腐朽等の処理を施し、31試料の測定を行ったが、 本報告では例としてスギの未処理材(密度0.46 g/cm³)と炭化材(密度0.40 g/cm³)腐朽材(密度0.40 g/cm³)についてのみ報告する。試料サイズは¢20 mm×30 mm、¢6 mm×30 mmで後者は高分解能 測定に用いた。

木材の炭化処理は、発熱性試験(ISO5660)に 用いるコーンカロリーメーターを用いて木材片 の一面を50kW/mの輻射熱で4分間加熱し炭化さ せた。

木材の腐朽処理は、JIS K 1571:2010(木材保 存剤-性能基準及びその試験方法)に準拠した。 供試菌にはオオウズラタケ(Fomitopsis

palustris(Berk.etCurt)Gilbn.& Ryv.FFPRI 0507)を 用いた。

図1. 木材片(スギ) 未処理材(左)・炭化材(中)・腐朽材(右)

2-2. 実験方法

実験はBL14Bで行った。初めに測定条件の検 討を行い、試料に対するX線透過率の計算と幾つ かの波長で測定した透過像の検討から以下の条 件を得た。光学系の概略を図2に示す。二結晶モ ノクロメータで単色化されたX線(波長1.24~1.4 Å)はスリットで10 mm × 10 mmに整形されコリ メータ結晶に入射する。コリメータにはSi 220 非対称反射(α=16,18,20 deg)を用いた。コリメ ータで反射したX線は回転・並進・傾き可能なゴ ニオメータにセットされた試料を透過して検出 器に入る。検出器にはII-CCD (XFDI, Photonic Science)を用いた。通常の測定では有効ピクセル サイズ23×23 μm²、空間分解能約50 μmのものを 用い、特に高分解能が必要な測定では有効ピク セルサイズ6.4×6.4 µm²、空間分解能約15 µmの ものを使用した。CT測定条件の検討のため、試 料回転ステップ、露光時間、積算回数をパラメ ータとして測定を行った。本報告で用いた試料 の測定条件は試料回転ステップ0.5°で180°回 転、露光4秒、積算5回である。得られた画像は フィルタ補正逆投影法によって断層像(CT)に変 換後3次元再構成像を作成した。

3. 結果および考察:

スギ未処理材、炭化材、腐朽材の CT3 次元再 構成像を図 3 示す。年輪などの内部構造が明瞭 に見られ、炭化材では炭化した部分(中段図の下 部)、腐朽材では腐朽した部分(下段図の右下部 分)が粗になっている様子が分かる。

図 3. CT3 次元再構成図 未処理材(上)・炭化材(中)・腐朽材(下)

炭化材では、炭化領域から熱分解領域へと密 度低下を確認でき、熱分解領域で微小な割れが 発生していることがわかった(図4)。木材は乾燥 に伴い割れが発生するが、燃焼中の熱分解領域 においても同様の現象が発生していることが確 認された。炭化による木材内部割れを測定する には、有効ピクセルサイズ23×23 µm²、空間分 解能約 50 µm であれば十分に測定可能であるこ とがわかった。

図4 炭化材断層像 (垂直方向断面: 高さ中央(15mm)) 矢印で示した部位 が微小割れ部。

未処理材と腐朽材の高分解能測定した試料の 強度を標準試料(密度既知のプラスチック)で CT 値化して算出した密度分布を図 5 に示す。年輪 の色の濃い部分と薄い部分では 3 倍程度密度に 差がある。腐朽材では全体に密度が低下し、特 に色の薄い部分では空隙が目立つ。測定データ から得られた平均密度は未処理材 0.47 g/cm³、腐 朽材 0.23 g/cm³で未処理材は重量、寸法測定によ る密度の測定値とほぼ一致するが、腐朽材では かなり小さい値になっている。これは腐朽状態 が場所によって異なるため、測定部位と全体の 平均値に差が生じたと考えられる。

また、未処理材でも微小な空隙(*ø*60 µm 程度) が分散していることが分かった (図 6)。

図5 スギ 未処理材(上)と腐朽材(下)の密度分布

図6 スギ 未処理材縦 断面方向の密度分布 黒い部分が空隙

腐朽材では、晩材、早材がほぼ均一に密度低 下している傾向である。今回腐朽処理に用いた オオウズラタケは、木材の強度に大きく影響す る成分であるセルロースを主に分解する褐色腐 朽菌に分類されるが、褐色腐朽菌に腐朽された 木材は曲げ強度が初期の腐朽段階から大きく劣 化することが知られている^[1]。曲げ強度は材料 の断面高さの2乗に比例するが、腐朽菌が晩材、 早材の区別無く断面に広がってセルロースを分 解することで、広がった部分全体の強度が低下 して有効な断面高さが著しく減少するという強 度低下機構が示されたと考えられる。

<u>4. まとめ</u>:

材質・処理等の異なる木材片の CT 測定を行い、入射エネルギーや光学素子などを最適化することによって測定方法を確立した。これによって腐朽や炭化の影響を可視化することができた。密度分布は2次元画像(コンターマップ)化することで微妙な変化をとらえることができ、炭化・腐朽・蟻害に伴う割れや密度分布を測定する十分な精度が得られた。高分解能測定では数十µmの空隙を識別でき、当初の目標以上の空間分解能を得ることができた。

一方、大型試料(105 mm × 105 mm × 300 mm) については測定領域を分割する方法で CT 測定 を行ったが、まだ十分な再構成画像を得られず 測定方法の見直しを含めた検討を行っている。 木材内部構造の変化が木造建築へ与える影響に ついて、詳細に検討・考察するためにはより大 きな試料(最低でも 105 角材)の内部構造可視 化が望まれる。

近年の中・大規模木造建築の増加に伴い、高 い防火性・耐久性の実現、点検・補修技術のさ らなる向上が求められており、本検討結果は不 均一材料である木材のより高度な技術構築の一 助になると期待される。

参考文献

[1] 公益社団法人日本木材保存協会:木材保存学入門 改訂3版, 2012, p.56