先端研究基盤共用・プラットフォーム形成事業

フォトンファクトリーにおける産業利用促進

課題番号: 2013I001
研究責任者: 星 哲哉、スターエンジニアリング株式会社
利用施設: 高エネルギー加速器研究機構 放射光科学研究施設 BL-14B
利用期間: 2013年4月~2014年3月

各種媒体中に内在する極小 RFID 識別装置の高解像度立体画像撮影 High-resolution three-dimensional imaging of extremely small RFID devices embedded in various media

星 哲哉、佐川 学、安田 冨郎 Tetsuya Hoshi, Manabu Sagawa, Tomio Yasuda

> スターエンジニアリング株式会社 Star Engineering Co., Ltd.

<u>アブストラクト</u>:

大きさが1 mm³以下である極小 RFID 識別装置(IC タグ)の高精度透過像撮影技術の確立を目的として実験を行った。測定条件の最適化によりラボ装置では識別できなかった線径 ¢25 µm の銅線を用いたアンテナコイル巻線構造が明瞭に撮像できた。撮像時のX線照射によってIC タグの通信機能に損傷がないことも確認した。これらによりIC タグの媒体内での位置関係の把握以外に他社品との識別のための評価方法としても本手法が活用できることが分かった。

High-resolution X-ray absorption image of Radio frequency identification (RFID) device (IC tag) of less than 1mm^3 in size was observed. The wiring structure of the antenna coil using wire of 25 µm diameter was observed clearly by optimization of the measurement condition, although it was not able to be distinguished in the equipment in laboratory. It was also confirmed that there is no damage to the communication function of the IC tag by X-ray irradiation. These results indicate that this method is effective not only for a grasp of physical location of an IC tag in a medium but also for identification of RFID device makers.

<u>キーワード</u>: IC タグ, 媒質, 透過像, CT

<u>1. はじめに</u>:

1-1. 研究の背景

RFID 識別装置(以下 IC タグと略称する)は Suica を始めとして広く社会で使用されている が、その技術動向は識別性能の向上(通信距離 の拡大、重ね読み枚数の増大、媒体の影響の排 除)、耐環境性の向上、小型化、低価格化など多 岐にわたっている。

小型化は通信距離の拡大とは相容れない傾向 にある。しかし、媒体そのものを他の媒体から 識別するため種々の媒体にICタグを挿入して使 用する場合、ICタグは出来るだけ小さくして媒 体への負荷を少なくすることが望ましい。弊社 では通信距離を確保しつつ1 mm³に納まる寸法 にまで小型化した世界最小クラスの極小ICタグ を開発し、「スーパーマイクロタグ」と命名して 市場に投入した[1]。図1は、ICタグを米粒表面 に埋め込んだものの光学顕微鏡写真である。幸 いスーパーマイクロタグに対する反響は大きく、 医療、養殖、林業、農水産業、建設業などにお いて検討が開始されている。

使用に際しては媒体内でのICタグの位置関係 を把握する必要がある。弊社ICタグの特徴とし て読み取り距離の指向性が強いので、この指向

図1 米粒に埋め込んだ IC タグ (スーパーマイクロタグ)

性を利用してタグの位置を 2~3 mm の精度で把 握することが出来るが、IC タグの向きや状態も 識別できる高精度な情報が求められている。こ のため数~数 10 μm の精度で位置を確定するこ とが出来る評価方法の確立が急務である。

また、現状では IC タグ自体の偽造も増加傾向 にある。高解像度で立体画像撮影することがで きれば媒体の中にある状態で弊社の製品である ことが構造的に立証できるため、IC 内に書き込 まれた識別番号を偽造した IC タグを使用されて も真贋判定を確実に行うことが可能となる。

これらの背景から媒質中のICタグの高解像度 画像取得方法としてラボ装置を用いた透過X線 画像撮影を試みたが、タグの構造特にアンテナ コイルの一本一本が全く識別不能な画像しか得 られなかった。そのため放射光を用いた透過・ CT 像測定の可能性を検討するに至った。

1-2. 研究の目的

本研究では、IC タグの媒体内での位置関係把 握、他社品との識別のため①高精度の透過像撮 影技術の確立、および②X線撮影が IC タグの通 信・記録性能に及ぼす影響の確認を目的として 実験を行った。

1-3. 研究の目標

ICタグのアンテナコイル(線径 φ25 μm)の巻線 構造が明瞭に識別できる透過像を得ること、そ の時の照射損傷を把握することを目標とした。

<u>2.実験</u>:

2-1. 試料

本実験ではプラスチック、木材、セラミック ス、肉類など14種類の媒体にICタグを埋め込ん だものを試料とした(図2)。ICタグは約0.9×0.8 ×0.15 mm³のICチップ上に銅製アンテナコイル 約 ϕ 0.9 mm×0.5 mmが乗った構造になっている。 照射損傷実験ではICタグに直接X線を照射した。

10 mm

図2 試料 (媒質はアクリル)

因う 谷種媒員のX 緑透迥平[2] 媒質の厚さt=14.14 mm、銅コイルt=0.6 mm として計算

2-2. 実験方法

実験はBL-14Bで行った。初めに測定条件の検 討を行った。試料に対するX線透過率の計算を行 い(図3)、適切と思われるX線エネルギー(透過率 10%程度となるエネルギー)の近傍でエネルギー を変化させて測定した透過像から照射X線エネ ルギーを決定した。図3から分かるようにほとん どの媒質がコイル部分との透過率の差が大きく、 両者を同時に鮮明に撮影することは困難である と考え、今回はコイル部分を優先して照射X線エ ネルギーを38.4 keV(波長λ=0.32 Å)とした。

光学系の概略を図4に示す。二結晶モノクロメ ータで単色化されたX線はスリットで10 mm× 10 mmに整形されコリメータ結晶に入射する。 コリメータにはSi 440 非対称反射(α = 8,9 deg) を用いた。コリメータで反射したX線は回転・並 進・傾き可能なゴニオメータにセットされた試 料を透過して検出器に入る。検出器にはX線 CCDカメラ (XFDI, Photonic Science)を用いた。 有効ピクセルサイズは6.4×6.4 μ m²、空間分解能 約15 μ mである。透過像測定は媒質によって露光 時間を2~20 sec/1枚と変化させ、CT測定は試料回 転ステップ0.5°で180°回転、露光10 sec/1枚で 行った。得られた画像はフィルタ補正逆投影法

によって断層像(CT)に変換後3次元再構成像を 作成した。また、照射損傷実験では媒質に埋め 込んでいないICチップに直接X線を照射した。照 射線量はSi PINフォトダイオードの計数値から 算出した。

<u>3. 結果および考察</u>:

結果の一例として今回の試料の中で媒質の X 線透過率が最も高い桐(89%)と透過率の低いア ルミナ(8%)に埋め込んだ IC タグの透過像を図 5 に示す。媒質の種類によらず数秒~10 数秒の照 射でコイルの状態が判別可能な画像が得られた。

媒質が骨の場合の CT 像から 3 次元再構成し た結果を図 6 に示す。図 6 はコイル部分を鮮明 にするためコイル下部にある IC チップのコント ラストを犠牲にしている。CT 測定には約 1.3 hrs を要したがコイルの銅線 1 本 1 本の状態が識別 可能な画像が得られた。3 次元再構成像では図 6 下図のように任意の断面像が得られるので、宝 石等の真贋判定など IC タグの構造の詳細な情報 が必要とされる場面での効果が期待できる。こ れらの結果を極小 IC タグの用途開発における貴 重な武器として使えると考えられるので、今後 本製品のセールスポイントの一つとして拡販に 生かしていきたい。

今回の測定条件では CT 測定に要する時間を 超えた 2 時間の照射で照射線量 5.1×10^3 C/kg、 Si の吸収線量 3.8 Gy となったが IC タグの性能 に変化は見られなかった。但し、X 線エネルギ ーを 12.8 keV(波長 λ =0.97 Å)にして 14 時間照射 した場合(1.3 C/kg、331 Gy)は完全に破損したの で測定条件を検討する場合には照射損傷も考慮 する必要があることが分かった。

図5 媒質中のIC タグ透過像 (a) 媒質:桐、照射時間 左右とも3 sec, (b) 媒質:アルミナ、照射時間 左 15 sec、右 6 sec。

図 6 媒質中の IC タグ 3D 再構成像 媒質:骨、照射時間約1.3 hrs。

<u>4.まとめ</u>:

放射光を用いた透過・CT 像測定によって極小 IC タグの詳細な構造が識別できる画像が得られ た。測定条件を適切に選択すれば IC タグの性能 を損なうことなく測定可能であることも確認で きたので、IC タグの媒体内での位置関係把握、 他社品との識別のための評価方法として活用で きることが分かった。この成果を踏まえ、今後 は当社事業の一環として放射光施設の利用を検 討して行きたい。本実験の成功は KEK ・PFの 平野馨一先生と高橋由美子博士の全面的なご指 導の賜物であり、ここに深く謝意を表します。

<u>参考文献</u>

[1]「非接触型 ID 識別装置」 星 哲哉、 佐川 学、 安田 冨郎、スターエンジニアリング株式会社、 特願 2010-89877(P2010-89877)、平成 22 年 4 月 8 日

[2] NIST データベースを利用。

http://www.nist.gov/pml/data/xraycoef/index.cfm Author(s)'s name(s), Journal vol. (year) page.