
Low-Cost Beamline Control System

Takashi Kosuge and Yoshinori Uchida, KEK, Tsukuba, Japan

Abstract

The Photon Factory has many different kinds of
beamline control systems, which are mostly based on
PCs. Recently, many users have requested that a
standard control system be made. The new system must
be made at minimal cost and be easy to remodel.

Generally, the beamline optics comprising of a
monochromator and mirrors have been controlled by
pulse-motor controllers using GPIB at the Photon
Factory. Since high-speed control was not requested, it
was decided that an RS232C-GPIB converter would be
used.

Our system has become hardware-independent. By
writing the application in Perl, and running it on
FreeBSD, the cost has been significantly reduced. Perl is
a very powerful, and, from our experience, a very easy-
to-use language. Staff with limited programming
knowledge can learn to program in Perl at a low training
cost. Perl is a popular, powerful CGI language used in
the Web world. Through the use of Perl in the
application of a beamline control system, the language's
full potential has been realized.

This paper discusses the development of a low-cost
standard system at the Photon Factory and stresses that
in comparison to other languages Perl is far superior.

1 INTRODUCTION
At present, the Photon Factory has 21 main beamlines

in the PF 2.5 GeV ring and 3 beamlines in the AR. Also,
each main beamline has 2 to 4 branch beamlines for
experiments. Generally, the beamline components
(monochromator and mirrors) are controlled by pulse-
motor controllers at the Photon Factory. Currently, there
are various PC-based control systems (Windows95, DOS
etc.) which are running with different software. This
disparity has caused confusion. Of course, the staff has
been demanding a standard beamline control system.

Coincidentally, the beamline control system was due
for replacement at BL-16A. Therefore, we tried to
develop a new standard beamline control system for BL-
16A.

2 HARDWARE AND OS
This time, since we had to drive 27 pulse-motors, we

connected 2 pulse-motor controllers to our system.
The layout of the system is shown Figure 1.

2.1 Pulse-motor controller

The pulse-motor controller (Tsuji-Denshi PM16C-
02N) can drive 16 pulse-motors. It has a GPIB port on its
rear panel, and switches and displays on its front panel.
This controller is popular among the Photon Factory
staff. Since pulse-motors can be controlled and their
movement checked locally without a control system.

This time we used 2 pulse-pulse motor controllers of
this type. They are connected to a converter with GPIB.

2.2 GPIB-RS232C converter

The converter (Network-Supply GPNET model-20+)
has a RS232C port with a maximum data flow speed of
19.2 kbps.

The beamline control system does not require high-
speed control. Sufficient speed can be attained even
using this converter. Also, the system will not be
hardware dependent by using RS232C.

2.3 PC and FreeBSD

We used a low-price PC. It has a 200MHz Intel
Pentium processor with MMX technology CPU and
64MB RAM. We chose FreeBSD for the operating

Converter

PC

Pulse-Motor
Drivers

Pulse-Motor
Controller

Ethernet

GPIB

RS-232C(19.2kbps max.)

Pulse-Motor
Controller

Beamline(BL-16A)

Figure1: Hardware layout

system. FreeBSD is very stable and we can use it
without any cost. When designing a low-price system,
using a PC and FreeBSD is a good option.

3 SOFTWARE DEVELOPMENT
This time we needed to receive commands from other

software and computers. We made two separated
programs, the server program and the client program, in
developing the software (see Figure 2). They are
connected using TCP/IP sockets.

 The server program does low-level control and
translates commands from the client program and pulse-
motor controller. It can receive commands from other
software. Also, the client program prepares the user
interface and export commands for tuning the beamline
optics.

3.1 Developing the server program

When developing the server program, we made a
standard command set. The commands must be easy to
understand for users. Also, the output message should be
easy. We wrote the server program in Perl[1] [2] [3].

When the server program receives a command from
the client program, the command is translated into a
special command for the pulse-motor controller. The
server program receives output messages from the pulse-
motor controller, and then translates the special output
message to a common message. Then, the server
program sends it back to the client program.

3.2 Developing the client program with other
staff

We had to develop a client program with another staff
member who was a beamline specialist. However, his
knowledge about programming was very modest. We

needed to use an easy language for this situation. Also,
we found that Perl is very easy to learn. We expected
that Perl would help us when developing client programs
with him.

First, we lent a primer to him, and he studied it for 3
days. Then, he took one week to make simple
subroutines. During the same time, we made the main
program. Finally, we finished the first version of the
client program by merging the subroutines and the main
program.

3.3 Macro mechanism

When making a flexible program, it is necessary to
have functions similar to macro commands or scripts.
The “eval” function of Perl is very effective in this
situation. We produced a macro mechanism with the
“eval” function.

When the program receives a request for a macro
command, it loads a macro command file written in Perl,
and delivers the strings to “eval” as arguments.
Subsequently, they are executed by “eval”.

Users can use the very powerful macro commands of
this program in Perl by using the “eval” function.

4 AVAILABILITY OF PERL
As stated above, we could develop the programs easily

with Perl. Also, we found that Perl is effective on small
control systems.

4.1 Transferring strings

List 1 is an example in Visual Basic. Here, we want to
get a command and a parameter from strings, and set
them to variables, “cmnd” and “prmt”. If strings in
“cmnd” is “GetData” then change it to “Get”, and
increase “prmt”. We must ignore whether the letters are
capitalized or not here.

List 1: Example in Visual Basic (a=”GetData 2”)

 1: b = InStr(a, " ")
 2: If b > 1 Then
 3: cmnd = Left(a, b - 1)
 4: prmt = Mid(a, b)
 5: prmt = Trim(prmt)
 6: Else
 7: cmnd = Trim(a)
 8: prmt = ""
 9: End If
10: If UCase(cmnd) = "GETDATA" Then
11: cmnd = "Get"
12: prmt = prmt + 1
13: End If

or Other
Software
(SPEC etc.)

Serial Port

Server Program
(Perl)

Client
Program

TCP/IP
Socket

Low Level Control
(Checking limit switches
and checking requests
etc.)

User Interface
Beam Line Tuning
 etc.

Figure2: Software development

First, it finds the “space” character in the string in the
first line, and sets variables with information of locations
in line numbers 3 to 5. Then, it changes strings into
capitals for ignoring the case in line number 10.

What does the same program look like in Perl? You
can find that Perl requires only 2 lines on List 2.

In the first line, the string is divided into a command
and a parameter with a “split” function, and they are set
to variables. In the second line, the strings in “$cmnd”
are changed to “Get” and increase “$prmt”, if the string
is “GetData”.

This example shows that we can change strings very
easily with Perl.

4.2 Platforms

The significant advantage is that Perl runs on many
platforms. Table 1 shows that Perl has more platforms
for running compared to other languages. Of course,
occasionally we have to change a few codes for
differences in the operating system, but we can mostly
use the same Perl codes on many platforms.

Table 1: Programming languages and platforms
(Jan. 1999)

 JDK 1.1.x Visual
Basic

 Perl 5.0

 Solaris Yes No Yes
 Windows
 95/NT

 Yes Yes Yes

 Macintosh No No Yes
 Linux Yes No Yes
 FreeBSD Yes No Yes

4.2 GUI

Finally, we have a problem which must be solved. It's
a GUI. We are planning to use Perl/Tk. It consists of a
portable tool kit and a Tk module. We can use this tool
kit by writing “use Tk” at the top of the program (List 3).
Then, if we execute the program, the GUI window will
appear on the screen (Figure 3). If we push the button,
the subroutine “start” or “stop” is be executed. We hope
that we will be able to obtain a good GUI easily with
Perl/Tk.

5 SUMMARY
We made a low-cost beamline control system with

PCs and Perl.
This system has satisfied the requirements, “It must be

low cost”, “It must be easy to remodel.” and “Anyone
must be able to maintain the system”.

Now we have finished off-line tests and the system
will be in use at BL-16A from this February.

REFERENCES
[1] Randal L. Schwarts, and Tom Christiansen,

“Learning Perl Second Edition”, 1997, O’Reilly &
Associates, Inc.

[2] Larry Wall, Tom Christiansen, and Randal L.
Schwarts with Stephen Potter, “Programming Perl
Second Edition”, 1996, O’Reilly & Associates, Inc.

[3] Sriram Srinivasan, “Advanced Perl Programming”,
1997, O’Reilly & Associates, Inc.

List 2: Example in Perl ($_=”GetData 2”)

Figure 3: GUI with Perl/Tk

List 3: Using Perl/Tk

 use Tk;
$top=MainWindow->new();
$top->title("Test");
$label1 =$top->Label(text => '=STOP=');
$button1=$top->Button(text => 'Start’,
 command => \&start);
$button2=$top->Button(text => 'Stop',
 command => \&stop);

$label1->pack();$button1->pack();
$button2->pack();

MainLoop();
sub start{$label1->configure(text => '=RUN=');}
sub stop{$label1->configure(text => '=STOP=');}

 ($cmnd, $prmt) = split;
 if($cmnd=~s/^GetData$/Get/i){$prmt++}

	吀漀瀀 倀愀最攀
	倀愀瀀攀爀 䤀渀搀攀砀
	䄀甀琀栀漀爀 䤀渀搀攀砀
	䴀漀瘀椀攀

