
APPLICATION SERVER AND PUSHING TECHNOLOGY ON COACK-II

Takashi Kosuge, Isamu Abe, Junichi Kisiro, Kazuyuki Nigorikawa, Masakatsu Mutoh*, and
Shin-ichi Kurokawa

High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

*LNS Tohoku Univ. Taihaku, Sendai, Miyagi, Japan

1 INTRODUCTION
The COACK-II (Component-ware Oriented

Accelerator Control Kernel)1 is a very powerful and
flexible system. Many client computers that run with
many kinds of operating systems use it [1][2][3]. We must
update and maintain the COACK-II applications on these
client computers.

The push system is required on the application server to
reduce the application labor, upgrade and maintenance
times

We are developing a new program push system for the
COACK-II and a system is required that:

* It must be able to control computers that are running
different kinds of operating systems.

* It must be simple.
* It must be updateable.
At this time we have made the first-version programs

(including the test version) of the system. We describe
here the details and how the system actually works.

2 OVER VIEW

2.1 Layout of the application push system

The application push system consists of 3 types of
program the push commander, the kicker and the
application manager. (Fig. 1)

The push commander works on the application server,
and controls the updating of COACK-II application
programs. We are developing the push commander with
Visual Basic.

The kicker works on a client computer. When the
kicker receives a request from the push commander, it
executes the application manager. We have prepared a
DCOM version and a TCP/IP socket version kicker. We
are going to make compliant different kinds of operating
systems by using these types of kickers.

If the kicker starts up the application manager, the
application manager tries to connect to the push
commander with the TCP/IP socket. We made the

1 This project is supported by JST (Japan Science &
Technology).

application manager with Perl[4][5]. It is possible to write
a program that does not depend on the operating system.

2.2 Procedure of running programs

We can manage the client computers from the
application server with this system. The procedure of the
three programs is shown Fig. 2.

First, if we choose the client computer and push the
connect button, the push commander connects to the
kicker with the DCOM or TCP/IP socket. Then the push
commander sends the "call ID" to the kicker and waits for
a connection from the application manager.

Kicker
 DCOM: Windows
 Socket: UNIX

COACK-II
Application
manager

Push
commander

Client Computer Server Computer

Figure 1: Composition of the system

Server Computer Client Computer

Call Kicker Get “Call ID”

Send “Call ID” Start up Application manager
 and send “Call ID”

Get server address
 and port number

Connect and
send “Call ID”.

Wait for the connection

Check “Call ID”

Send command Execute command
 and return result

Get result

Push commander Kicker

Application manager

Figure 2: Procedure of programs

Next, the kicker starts up the application manager and
sends the "call ID" to the application manager.

Then, the application manager tries to connect to the
push commander with the TCP/IP socket. The application
manager knows the application server and TCP/IP socket
number beforehand. An easy security mechanism with a
call-back style connection has been made.

Finally, the push commander checks the "call ID" from
the application manager.

The application manager works according to the
commands given by the push commander after a
connection had been established.

3 DETAILS OF THE PROGRAMS

3.1 The push commander

The push commander runs on the application server
with Windows NT. The push commander is being written
with Visual Basic. The present push commander is a test-
version program. Thus, it can not connect all the client
computers at the same time. We are planning to develop a
multi-connect type push commander in the future, which
will be connected to COACK-II with DCOM. After which
we plan to use databases through COACK-II.

3.2 The kicker

The kicker runs on the client computer. It only starts
the application manager and sends the "call ID". We
prepared 2 types of kickers: the one is a DCOM-based
kicker, the other a TCP/IP socket-based kicker. The
DCOM-based kicker is used for Windows, and receives
requests from the push commander with DCOM. The
TCP/IP-based kicker is used for UNIX and other
operating systems.

3.3 The application manager

The application manager runs on client computers. If
the kicker starts it, it will connect to the push commander
with the TCP/IP socket. If the connection is already
established the application manager works according to
the text-based commands from the push commander.

The applications of COACK-II are installed on
resolved directories on the client computer. We can install
the COACK-II application programs through the
application manager (Fig. 3).

The application manager has a script mechanism and
the script files are also installed on a resolved directory. If
we update the script files using an application manager
mechanism, we can update it dynamically.

We made the application manager with Perl. We must
install Perl on the each client computer first, although the
same application manager programs are able to run on
many kinds of operating systems without changing the
programs.

The script mechanism is issued by the "eval" function
of Perl. If we set the strings into the variables and call the
"eval" function, the string will be executed by the "eval"
function, just the same as when using the Perl commands.

Here, the application manager finds the script file and
executes it if the command from the application manager
is not a common command on the application manager.

If an error occurs in the "eval" function, it only returns
an error code to the main program. Program termination
by the error does not occur in the "eval" function. Then,
the application manager will not crash if we install the
erroneous script files.

4 ACTUAL OPERATION
The actual running state of the push commander is

shown in Fig. 4. If we set the IP address of the application
manager on the push commander and push the connect
button, the connection will be established, as described
above. Then, the COACK-II application list of the client
computer will appear on the list box of the push
commander. Here, the push commander sends the
"ListPrograms" command to the application manager and

/script
 script file1
 script file2
 :

/application1
 binary file
 data file
 :

/application2
 binary file
 :

/Directory for COACK-II

Client Computer

Script Files

COACK-II
Applications

Application
 manager

Figure 3: Application manager

List of COACK-II applications
 on the client computer

Figure 4: Push commander

shows the application list that is sent by the application
manager.

The system also has a binary transfer mechanism. (Fig.
5) This mechanism is used for transferring COACK-II
applications to the client computer. In this case, the push
commander tells the directory to install and send the
application name to the push commander. Then, the push
commander sends the spliced binary data to the
application manager.

5 ADDITIONAL FUNCTIONS
We can easily and dynamically add functions to the

application manager, as explained above. It depends on
the adoption of Perl. Perl is very powerful, and we can use
its functions easily. We are now developing some
additional functions with the advantages of Perl. The
functions are introduced here.

5.1 Accessing the ftp server

We are developing an ftp client function for the
application manager, allowing installation of COACK-II
applications from the application server. However, it is

required that the push commander runs on the application
server. If the application manager has an ftp client
function, we can divide the push commander and
application server. In addition, a specific program is not
required on the application server; instead, only a generic
ftp server is required.

We are planning to use the Perl ftp module to add the
ftp client function to the application manager. Beforehand,
we must install the Net::FTP[6] module on the client
computer allowing easy use of ftp functions. The actual
procedure of the mechanism is shown in Fig. 5.

5.2 Administration of client computers

We are planning to prepare a mechanism that can
administer COACK-II applications on client computers
easily, and we are going to use Perl for developing the
mechanism.

Each configuration file will be put on a directory of
each COACK-II application. We will be able to change
the settings of the COACK-II client programs by editing
each configuration file through the application manager.

We will make the mechanism with the script system of
the application manager.

6 CONCLUSION
A program push system for COACK-II with very

simple mechanisms has been developed. A system which
does not depend on the operating system, that can be
dynamically updated with Perl. Our pushing technology
became an important part of COACK-II.

REFERENCES
[1] I.Abe, et al., COACK-II Project on Accelerator

Control Kernel Development, this conference.
[2] K.Nigorikawa, et al.,GUI and I/O Interface for

COACK-II, this conference.
[3] http://ninja.kek.jp/COACK2/
[4] Randal L. Schwarts, and Tom Christiansen,

"Learning Perl Second Edition", 1997, O'Reilly &
Associates, Inc.

[5] Larry Wall, Tom Christiansen, and Randal L.
Schwarts with Stephen Potter, "Programming Perl
Second Edition", 1996, O'Reilly & Associates, Inc.

[6] Sriram Srinivasan, "Advanced Perl Programming",
1997, O'Reilly & Associates, Inc.

Figure 5: Transferring binary files

Server Computer Client Computer

Send
 “FTPInstall” command Connect to the FTP server

Get result

Push commander Application manager

Get files from FTP server

Send result

Figure 6: Install programs with FTP

