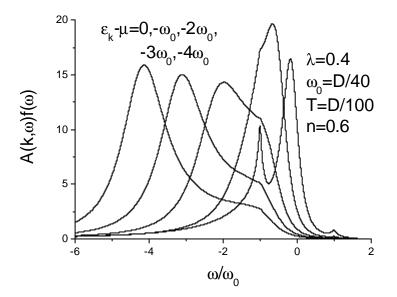
Theory of Angel-Resolved Photoemission Spectra of the

Many-Electron Frohlich Model

H. Zheng¹ and K. Nasu²

¹Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China ²Institute of Materials Structure Science, KEK, Tsukuba, Ibaraki 305, Japan


Abstract

We have developed a new approach, starting from the Frohlich Hamiltonian [1] and by means of the unitary transformation with the perturbation treatment, to deal with the angel-resolved photoemission spectra (ARPES) of electron-phonon coupling system. The approach takes care of the fact that only those electrons near the Fermi surface within a layer of width ω_0 (phonon frequency) are scattered by phonons strongly. Our results show that the ARPES is mainly composed of two part: the zero-phonon part and the one-phonon one. When the bare electron energy ε_k is close to the Fermi energy μ , ε_k - $\mu \leq \omega_0$, the one-phonon part is quite significant and the ARPES shows a two-headed peak. But for ε_k - $\mu >> \omega_0$, the one-phonon part disappears gradually and the ARPES shows a single broad peak. In the following figure we show some of our calculations with Einstein phonons and ε_k - $\mu=0$, - ω_0 ,- $2\omega_0$, - $3\omega_0$,- $4\omega_0$, where λ is the electron-phonon coupling, D the half bandwidth, T the temperature and n the band filling. These results qualitatively agree with recent experiments of ARPES on the Be(0001) surface and Bi₂Sr₂CaCu₂O₈ [2].

References:

[1] H. Frohlich, Phys. Rev. 79, 845 (1950)

[2] K. Ji, H. Zheng, and K. Nasu, Phys. Rev. B70, 085110(2004).

