X-ray magnetic circular dichroism at rare-earth $L_{2,3}$ absorption edges in various compounds and alloys

J.C. Parlebas^{a,*}, K. Asakura^{b,c}, A. Fujiwara^{d,e}, I. Harada^d, A. Kotani^{f,g}

^aIPCMS/CNRS, UM 7504, 23 rue du Loess, BP 43, 67034 Strasbourg, France
^bCREST, Japan Science and Technology Agency, 4-1-8, Honcho Kawaguchi, Saitama 332-0012, Japan
^cSynchrotron Radiation Research Center, Japan Atomic Energy Research Inst., Hyogo 679-5148, Japan
^dGraduate School of Nat. Sci. &Tech, Okayama Univ., 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
^e Ryouka Systems, Urayasu, Chiba 279-0012, Japan
^fRIKEN, Soft X-ray Spectroscopy Laboratory, 1-1-1 Kouto, Mikazuki-cho, Sayo, Hyogo 679-5148 Japan
^gPhoton Factory, Institute of Materials Structure Science, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Recent progress in techniques of synchrotron light sources has enabled us to study many phenomena which had been barely observable up to now. Among these, the X-ray magnetic circular dichroism (XMCD) in the X-ray absorption spectroscopy (XAS) in various materials displays a unique and powerful ability to reveal detailed information on electronic and magnetic properties of a selected atom and even a selected shell. A theoretical interpretation of the XMCD at rare-earth (called R hereafter) L₂₃ absorption edges is reviewed using differing models depending on the material under investigation. In a first part we present an overview of the recent developments of XMCD in XAS with general remarks, especially at R-atom absorption edges. Then we discuss two examples of XMCD spectra in : (i) RFe₂ Laves-phase compounds, using a tight-binding approximation for R 5d and Fe 3d conducting states, and (ii) R₂Fe₁₄B metallic compounds, with the help of a cluster model. The good agreement for R₂Fe₁₄B suggests that a cluster model provides a valuable method to quantitatively calculate XMCD spectra of R systems, even with quite complicated atomic arrangements. Actually we essentially focus our talk on the special case of Ce-systems, related to XAS and XMCD studies at the Ce L₂₃ edges. Two clearly differing cases are presented both from experimental and theoretical points of views: (i)A well localized 4f¹ system, i.e. Ce Ru₂Ge₂ (ii)A less localized 4f¹ system, i.e. CeFe₂, with a 3d partner. Also we investigate the influence of substitution on the low temperature properties of CePd₃ : $Ce(Pd_{1-x}Ni_x)_3$ with x taken up to about 0.25. Moreover the Ce L₂₃ XMCD signal measured in CePd₃ demonstrates that in the Ce based dense Kondo materials, only the 4f¹ channel gives a magnetic response. At last we give another example : $Ce(Pd_{1-x}Mn_x)_3$ where x is about 0.03 giving rise to (CePd₃)₈Mn where Mn sublattice undergoes a ferromagnetic transition and where Ce ions form a dense Kondo lattice and are in a paramagnetic state.

*Corresponding author : e-mail address : parlebas@ipcms.u-strasbg.fr