2015/3/17 物構研フェスタ

エネルギー変換材料の表面界面物性:VUV/SX放射光分光による研究 2012S2-006

期間:2012.10~2015.9 代表者:吉信淳·東京大学物性研究所

実験組織:(東大物性研)小森文夫, ミック・リップマー, 吉本真也, 向井孝三 (慶應大理工)近藤寛, 吉田真明 (千葉大院融合)坂本一之, 水津理恵 (筑波大院)櫻井岳暁, 中村潤児, 近藤剛弘 (東工大院物質)小澤健一 (東工大総合理工)中辻寛 (立教大理)枝元一之(上智大理)坂間弘(弘前大)加藤博雄(群馬大)Md. Zakir Hossain (KEK-PF)間瀬一彦

本研究の背景と現状	2012S2課題における具体的な研究組織体制・役割分担	本S2課題のミッション
 BL13Aの高度化(2009~) >VUV&SX専用アンジュレータービームライン >エンドステーションの充実(SES200, Phoibos, 放射光STM, AP-XPS) >2009S2-007「有機分子-電極系の構造・電子状態と電荷移動ダイナミクス」 ⇒ 蓄積した知的&技術的資産をさらに発展させる ・ BL13のブランチ化(2013春~) ・ BL13のブランチ化(2013春~) ・ BL13のアンジュレーター更新(2015春予定):可変偏光 ↓ ユーザーグループの積極的な参加→共同研究の推進 	研究全体の総括:吉信(代表者) BL13Aの常設&準常設エンドステーションの高度化 SES200の同期化 (小澤,間瀬,PF) Phoibosの極低温化と同期化 (吉信,間瀬,PF) AP-XPSの準常設化と同期化 (近藤,間瀬,PF) 酸化物表面の電 子状態と電荷移動 (小澤, 古信, 枝元) 輸合金の酸化と 無媒反応 (小澤, 近編, 吉信) 有機薄膜 捨合 電荷移動 (欄,小漂,問編,百倍) 有機薄膜 捨合 (文ブ) y f (坂本, 中社) 金属水素吸蔵: (中社, 近編,百信) コペシデンス分光: 局所価電子状態 (開紙,小澤, 枝元, 吉信) びハープ間の共同研究体制の強化による相乗効果	 ◆「エネルギー変換材料の表面界面物性」 シ 表面化学・・・内殻光電子分光→表面界面の分析と評価 > 表面ARPES・・・価電子帯バンド分散→電子物性の解明 ◆ 共同研究による新たな課題へのチャレンジ、実験技術を解析手法の共有化 ◆ BL13の2ブランチ化への対応とエンドステーションの高度化 > BL13Bへのエンドステーションの移動と最適化. > エンドステーションの保守・管理と効率的な運用. . SES200:XPS+ARPES, コアホールクロック測定システムの構築 . Phoibos100:低温HR-XPS測定 . AP-XPS:雰囲気オペランド測定
(表面化学 & 表面ARPES→統合へ協議中) ナノサイエンス,有機材料 ⇒ エネルギー変換材料	エネルギー変換材料の表面界面の電子状態を,光電子分光,軟X線吸収分光, コインシデンス分光で分析し,エネルギー準位接続,電子状態と機能,エネル ギー変換過程の解明を通じて,新材料開発への指導原理の確立を目指す	◆ BL13のアンジュレーター更新への対応(2015年春予定)

二次元TiO₂薄膜の合成と評価 枝元(立教),小澤(東工大),吉信(東大物性研)

SiC表面に成長させたエピタキシャルグラフェンの液相化学修飾 吉信(東大物性研), Md. Zakir Hossain(群馬大)

We successfully demonstrate the chemical modification of EG on the Si-face of SiC(0001) using the well-known synthetic route for binding the alkyl, vinyl, or aryl group to the C atom of another compound. The treatment of Cl-modified EG with CH₃MgBr in THF under oxygen free condition results in the complete replacement of the chemisorbed Cl atoms by the CH₃ groups. The STM, XPS, and Raman investigations of the modified graphene indicate that both the Cl and CH₃ species are covalently bonded to the basal plane of the EG. Chemisorption of Cl is found to be selective at the monolayer regions of EG grown on the Si-face of the SiC substrate. Consequently the replacement of Cl by the CH₃ group following the treatments with CH₃MgBr also occurs in the monolayer graphene regions. The CH₃-modified EG is found to be thermally stable at least up to 300 °C. Since there are varieties of Grignard reagents available or can be prepared, the present findings are expected to open a new synthetic route for chemical modification of graphene making it suitable for a variety of potential applications.

論文

X Hao, S Wang, W Fu, T Sakurai, S Masuda, K Akimoto	Novel cathode buffer layer of Ag-doped bathocuproine for small molecule organic solar cell with inverted structure	Organic Electronics 15 , 1773-1779 (2014).
Xia Hao, ShenghaoWang, Takeaki Sakurai and Katsuhiro Akimoto	The effect of bathocuproine (BCP) buffer layer in small molecule organic solar cells with inverted structure	Japanese Journal of Applied Physics (in press)

招待·依頼講演

T.Sakurai	Influence of buffer layers on energy-level alignment in organic thin-film solar cells	SPIE Photonics Europe,ベルギー(招待講演)2014/4/15	
T.Sakurai	Analyses of hetrointerfaes in organic solar cells	The 3rd Malaysia-Japan Joint Workshop on Compound Solar Cells a Systems(招待講演) 2014/9/22	
櫻井岳暁	放射光による有機薄膜太陽電池界面の分析	応用物理学会/有機分子・バイオエレクトロニクス分科会講習会「 機半導体デバイスの界面分析の基礎と応用」(依頼講演)2014/11	
T.Sakurai	Study of energy level alignment at electrode interfaces in organic solar cells	Pacific Rim Symposium on Surfaces, Coatings and Interfaces (PacSu 2014)、米国(招待講演)2014/12/9	

0.05wt% NbドープSrTiO₃(001)-(1×1)TiO₂表面上でのπ共役系有機分子の吸着挙動 小澤(東工大),加藤(弘前大),間瀬(KEK)

・長距離秩序は三次元結晶と異なる (薄膜特有の構造)

94日本化学会春季年会、名古屋大学(名古屋市)、2014年3月29日。 光電子分光およびX線吸収端微細構造によるAg(110)上のTiO。超薄膜の評 価" 杉崎裕一(他4名)第10回放射光表面科学研究部会シンポジウム・顕微ナ ノ材料科学研究会合同シンポジウム、2014年7月、名古屋 "Ag(110)上に合成した(1×1)TiO2超薄膜の電子状態" 杉崎裕一(他9名)第34 回表面科学学術講演会、2014年11月、松江。

雰囲気光電子分光によるCOおよびNOの吸着状態の研究 近藤(慶應大), 間瀬(KEK)

CO on Pt(111) up to 0.1 Torr (近藤G&間瀬Gの共同研究)

a

「金属・人工薄膜水素吸蔵と構造・反応性の相関」

東エ大総理エ 中辻G · 東大物性研 吉信G · 慶應大理エ 近藤G

研究目的 Pdは従来より水素吸蔵物質として知られ、水素の解離吸着・吸蔵の過程が調べられ てきたが、これに伴う電子状態の変化には不明な点が多い。吉信Gは従来より水素吸 着Pd 表面に興味を持っており、水素雰囲気中で表面構造が劇的に変化することを STM で観測した。一方、中辻GはSi 基板にAg薄膜・Pd薄膜を作製し、水素の侵入と吸 蔵について研究を進めつつある。本研究では、BL13AにおけるSES200(Phoibos100)装 置を用いたUHV中での高分解能XPS測定と価電子帯測定を行うことで表面構造と吸 着状態の相関を探り、さらに、近藤G保有のAP-XPS装置を用いて準大気圧水素雰囲 気下でのPd, Ag, Siの高分解能XPS測定を共同で行い、水素吸着と吸蔵、水素誘起表 面相転移現象を電子論的に研究する。

学会発表

1.「Cs吸着による有機/酸化物界面での電荷移動の制御」木村結花子,伊田直也,加藤博雄,間瀬一彦,小澤健一 第27回日本放射光学会年会・放射光科学合同シンポジウム(2015年1月10日~12日)

2.「TCNQ 吸着によるSrTiO₃(001)表面の電子構造変化と電気伝導度変化の評価」伊田直也,木村結花子,加藤博雄,間瀬一彦,小澤健一 第34回表面科学学術講演会(2014年11月6日~8日)

3.「π共役系色素分子と酸化物表面間の電荷授受制御」木村結花子,伊田直也,加藤博雄,小澤健一

第2回物構研サイエンスフェスタ(2014年3月18日~19日)

4.「有機/酸化物界面の電荷移動制御」小澤健一,木村結花子,三森悠平,加藤博雄

第27回日本放射光学会年会・放射光科学合同シンポジウム(2014年1月11日~13日)

5.「光電子分光を用いたCu₂Zn₂₀(111)単結晶表面への分子吸着研究」 三森悠平, 木村結花子, 加藤博雄, 小澤健一, 紋谷祐爾, 近藤寛, 間瀬一彦 2013年真空·表面科学合同講演会 第33回表面科学学術講演会(2013年11月26日~28日)

6.「π共役系色素分子と酸化亜鉛間の電荷授受制御」木村結花子,三森悠平,加藤博雄,小澤健一

2013年真空·表面科学合同講演会 第33回表面科学学術講演会(2013年11月26日~28日)

7.「色素分子吸着による酸化亜鉛表面の電子構造制御」 鈴木尉浩, 栃久保亮, 加藤博雄, 間瀬一彦, 小澤健一

第32回表面科学学術講演会(2012年11月20日~22日)

Evacuation

310 309 308 307 306 305 Binding Energy (eV) Formation of (2x2)-2NO+O R. Toyoshima et al. J. Phys. Chem. C 119, 3303-M. Yoshida and H. Kondoh, Chem. Rec. 14, 806-R. Toyoshima and H. Kondoh, J. Phys.: Condens.

水素は界面に到達してSiと結合している。 QWSの変化は、H吸蔵による界面構造の変化による? 中辻ら,

日本物理学会

27pPSA-15

2013年秋の分科会