2016S2-004 量子ビームサイエンスフェスタ 2018

元素戦略、ACCEL プロジェクトにおける放射光利用研究: 新電子材料、新触媒の機能性発現機構の解明 Synchrotron radiation research on element strategy and ACCEL projects: The investigation of functionalities in new electronic materials and catalysts 山浦,河智,北野,戸田他(東エ大元素セ/フロンティア) 組頭, 堀場, 湯川, 小林賢, 佐賀山, 熊井, 阿部, 村上他 (KEK物構研)

Research findings

薄膜"単"結晶構造解析法の開発

道体藡暄	手法	得られる情報	精度	
~ J T /~J // ~	AFM•TEM	表面状態 原子像	0.1 Å~	
)法)	XAFS	結合長	0.01 Å~	
	CTR散乱	原子配列	0.01 Å~	
同じ) 皆晶構造不明 ω > 60°	T _c と結晶 原子位置 薄肌	構造の関係の譲 の0.001 Å~精 し し 関単結晶構造	議には、 度が必要	
Ψ	20	構造因子の実活 計算値F _c はよく	則値F。と 二致	

アンモニア合成触媒における反応機構

catalyst	Ru loading (wt %)	N_{s}^{c}	$A_{\rm m}({\rm Ru})^d~({\rm m^2~g^{-1}})$	$r_{\rm NH_3} \ ({\rm mmol} \ {\rm g}^{-1} \ {\rm h}^{-1})$	$E_{\rm a}~({\rm kJ~mol^{-1}})$	reference
Ru/Ca ₂ NH	1.8	3.3×10^{18} ^{<i>a</i>}	11.3"	3.386	60	17
	0.1	$6.2 \times 10^{18} {}^{b}$	411.9 ^b	0.587		
Ru/CaNH	1.8	4.7×10^{18} ^{<i>a</i>}	16.0 ^a	0.308	110	17
	0.1	$2.5 \times 10^{18} {}^{b}$	155.5 ^b	0.011		

 $V_{\rm G} = 4.0 \, \rm V,$

020

020

110

110

110

110

230 K

EDLT電場下X線回折における鉄の空孔秩序観察

-0.5 0.0 0.5 0.0 0.5 -0.5 可能性(Ca欠損?) $k_{X}(\text{\AA}^{-1})$ $k_{\mathbf{X}}(\mathbf{A}^{-1})$ \rightarrow BiドープでDirac点観測まであと一歩 Ca₃Pb_{0.92}Bi_{0.08}O Ca₃PbO

論文リスト

1. K. Kobayashi et al., Sci. Rep. 6, 39646 (2016). 2. K. Kobayashi et al., PRB 96, 125116 (2017). 3. H. Abe et al., BCSJ **90**, 963 (2017). 4. H. Abe et al., J. Phys. Chem. C 121, 20900 (2017). 5. Y. Obata et al., Phys. Rev. B 96, 155109 (2017). 6. M. Kobayashi et al., Sci. Rep. 7, 16621 (2017). 他6報投稿準備中