PF 直線部改造と挿入光源

山本 樹 物質構造科学研究所、放射光研究施設

Insertion devices and improvement of the straight sections at the PF ring

Shigeru YAMAMOTO

Institute of Materials Structure Science, Photon Factory

1.はじめに

物質構造科学研究所ではかねて懸案であった AR の改造を 2001 年に終了し、2002 年始めから立ち上 げ・焼き出し運転に入りました。詳しい報告は今 後各担当グループからなされるでしょう。挿入光 源についても、この改造の機会をとらえて製作・ 設置したテーパ型真空封止アンジュレータに関す る報告をいずれ行いたいと思います[1]。

さて、PF 直線部の改造については、上記の AR 改造が一段落したこともあって着手の準備が整い つつあります[2]。今回はこの改造によって PF リン グに新設される 4 つの直線部に設置可能な短周期 アンジュレータについて紹介しようと思います。こ の直線部改造が完了した場合には、この他にも(ほ ぼ倍増される直線部の長さを生かした)アンジュレ ータの新設・現行機の改造等が考えられます。さら にそのような機種更新の結果、アンジュレータの運 転も現状より大幅に改良され使い勝手が良くなる ことが期待されますが、それらについては別に機会 を設けて順次紹介していきたいと思います。

2. 直線部改造計画

直線部改造計画については、現在光源研究系を中 心にその詳細が検討されています。ここでは、放射 光利用に重要な点を復習しておきます[3]: Fig.1(改 造後の PF 加速器ラティス配置)および Table1(改 造による直線部増強)。この改造で最も重要な点は、 1997年に行った高輝度化改造で達成した低エミッ

Figure 1. Lattice configuration of the PF ring after the improvement of the straight sections. (Refer to the color figure on p. 29.)

Straight		
Sections	Length (m)	Notes
B01-02	5.0 9.2	
B15-16	"	
B03-04	4.3 5.7	shared with RF cavity
B13-14	"	Vertical wiggler
B17-18	"	shared with RF cavity
B27-28	"	
B04-05	3.7 5.1	
B12-13	"	
B18-19	"	
B26-27	"	Injection
B02-03	0.0 1.5	
B14-15	"	
B16-17	"	
B28-01	"	

 Table 1. Enhancement and extension of the straight sections in the PF ring.

タンスを保ちつつ、偏向電磁石の位置を固定して四 極電磁石の強度を強め長さを減らすことにより光 軸不変のまま、直線部の新設および既存直線部の拡 張を行えるところにあります。Fig.1 に示したよう に、B04-05、B12-13、B18-19、B26-27 間の 3.7m 直 線部が 5.1m に、B03-04、B13-14、B17-18、B27-28 間の 4.3m 直線部が 5.7m に、さらに B01-02、B15-16 間の 5.0m 直線部が 9.2m に拡張(伸長)されます。

また、特徴的なことは鉛直方向について 0.5m 以 下のβyを実現可能な 1.4m 直線部(短βy直線部)が 4本(B02-03、B14-15、B16-17 および B28-01 直線 部)新設されることです。これらの 1.4m の直線部 は、そこに短周期のアンジュレータを設置し、X線 領域のアンジュレータ光を PF2.5GeV リングにおい て利用可能にできるという点で、非常に重要です。

以上の結果として、現状で挿入光源に使用している(B04-05を含めて)7本の直線部に加えて、拡張 された直線部においてRF空洞と同居することによ り2本が挿入光源のために利用可能となり、さらに 新設の4本の直線部と合わせて13本の直線部の利 用が期待できることになります。

3. 短βy直線部における Short Gap Undulator

アンジュレータ放射のエネルギはアンジュレー タ磁場の周期長に逆比例して高くなるので、周期長 を短くすれば数値的にはいくらでも高いエネルギ を達成することは可能になります。しかし、無闇に 短い周期長を採用しても十分な磁場強度が得られ なければ、放射強度は非常に弱いものになってしま います。そこで、アンジュレータの磁石列間ギャッ プを小さく設定(Short Gap)して必要な磁場強度を 得るために、(1)ある直線部において電子ビームに 小さなアパーチャを許容する鉛直方向の短いベー 夕関数(β_y)を実現する加速器技術、および(2) 上述の短周期磁場の発生に要求される狭いギャッ プと電子ビームに必要なアパーチャを両立させる ための真空封止型挿入光源技術が必要となります。

第 2 節で述べたように今回の直線部改造計画で は、新たに設置する4本の直線部(B02-03、B14-15、 B16-17 および B28-01)において上記の短β,直線部 (βy=0.4m)を実現できるように設計されています。 現状ではこの値は、磁石列長を0.5mとした場合、 4.5mmの許容アパーチャを与えることになりま す:改造前のPFリングで最小アパーチャを与える MPW#16(B15-16 直線部に設置)と同一の実効ア パーチャを与えるように設定した(光源系、小林幸 則氏)。

一方で、真空封止型挿入光源については、1989 年に建設し AR に設置した U#NE3 の開発で得た知 識・技術を、冒頭に述べたように 2001 年末新たに AR に設置したテーパ型真空封止アンジュレータの 開発・建設においてブラッシュアップしたところな ので、現在検討中の真空封止型 Short gap undulator (SGU とここでは呼ぶことにします)の建設を行 うことは十分に可能であると考えています。真空封 止型挿入光源の最大の利点は、加速器・蓄積リング の運転状況に合わせて自由にギャップを変更でき ることのほかに、挿入光源を構成する磁石を直接に 加速器真空内に持ち込んでいるため、加速器が必要 とするアパーチャに等しいギャップを設定するこ とが可能であるということです:今回の例では許容 アパーチャ 4.5mm に等しいギャップを設定できる ということ。

それではこの SGU から得られるスペクトルの計 算例を幾つかの周期長について紹介することにし ましょう。この時の光源パラメータは:加速エネル ギ E=2.5GeV、蓄積電流 I=300mA、ナチュラルエミ ッタンス ϵ_0 =27nm、エミッタンスカップリング κ =1%、 $\sigma_E/E=7.3\times10^{-4}$ 、 β_x =5m、および β_y =0.5m です。Fig. 2 にはこの条件で求めた SGU のスペクトルを周期長 λ u=20、16、12、および 10mm の場合について示し ました:(a)輝度(phs/s/mm²/mrad²/0.1%bandwidth)、 および(b)フラックス(phs/s/0.1%bandwidth);と もに基本波および奇数次高調波。Fig. 2 から読みと れるように、SGU の最大の欠点は、周期長が短い

Figure 2.

Spectra from the short gap undulators: (a) brilliance (phs/s/mm²/mrad²/0.1% bandwidth) and (b) flux (phs/s/0.1% bandwidth). Several cases with different period lengths, 20mm, 16mm, 12mm, and 10mm are shown. Parameters of the PF ring are: E=2.5GeV, I=300mA, ϵ_0 =27nm, κ =1%, σ_E /E=7.3 ×10⁻⁴, βx =5m, βy =0.5m. The minimum gap of the undulator with the length of 0.5m is assumed to be 4.5mm.

ことからくる波長可変領域の狭さなのですが、それ でも目的に応じて適切な周期長を選択すれば 1keV から 15keV(場合によって 20keV)領域で十分に性 能の高い光源としての役割を果たせるものと考え ます。

特に、蛋白質構造解析の光源として重要になる 10keVから12keV領域の放射光は、λu=20mmの場 合9次光で、λu=16mmの場合5次光で、カバーさ れることがわかります。さらに、λu=12mmの3次 光については最小ギャップを4.0mmまで狭くした 場合のスペクトル(マークの付いている部分より低 エネルギ側のカーブ)を示しました。上述のように 最小ギャップは現在のPFのMPW#16と同じ実効ア パーチャを与えるように決めている訳ですが、実を 言うとこの値が最小値であるという確証はなく、よ り小さなギャップが実現できる可能性もあります。

Figure 3.

Brilliance spectra from the short gap undulators for the several cases with different period lengths: (a) $\lambda u=20mm$ (K=1.56), (b) $\lambda u=16mm$ (K=1.05), and (c) $\lambda u=12mm$ (K=0.707). The same parameters are used for the PF ring as Fig.2.

もしも、今のところ仮に決めている最小ギャップ 4.5mm より狭いギャップを実現できるなら、より低 次のアンジュレータ光によって必要なエネルギ領 域をカバーできるので、今後のマシンスタディを通 して、または SGU 設置後のマシンスタディを通し て、最適の値を探索する必要があると思います。

Fig. 3 は上記の事情をより詳しく説明したもので す。12keVの放射を、(a)λu=20mmのSGUの9次 光(K=1.56)を用いて、(b)λu=16mmの5次光 (K=1.05)を用いて、および(c)λu=12mmの3次 光(K=0.707)を用いて各々得る場合のスペクトル 全体を示しました(光源パラメータはFig.2の場合 と同一です)。波長可変性を重要視して比較的長周 期長のSGUを採用するか、限られた波長範囲をな るべく低次高調波(または基本波)で実現するため に短周期長を採用するかは、今後利用実験の目的と 合わせて十分検討する必要があると思います。

我々は、2002 年度に上記の SGU 開発の R&D を 開始する予定でおります。新しい成果が得られた場 合には、またこの欄をお借りして報告したいと思い ます。

引用文献

- [1] 山本 樹,土屋公央,および塩屋達郎,第15
 回日本放射光学会年会・放射光科学合同シンポ ジウム予稿集,268 (2002).
- [2] 野村昌治, Photon Factory News 19 (3) 8 (2001).
- [3] 小林幸則, Photon Factory News 18 (2) 17 (2000).

著者紹介

山本 樹 Shigeru YAMAMOTO 物質構造科学研究所 助教授 〒305-0801 茨城県つくば市大穂 1-1 TEL:0298-64-5663 FAX:0298-64-2801 email:shigeru.yamamoto@kek.jp