準結晶とバルク金属ガラスの軟 X 線発光分光 Soft X-ray Emission Spectroscopy of Quasicrystals and Bulk Metallic Glasses

曽田 一雄 Kazuo Soda*

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-860, Japan.

*e-mail: j45880a@cc.nagoya-u.jp

In order to understand the stability of the unique structures in quasicrystals (QC) and bulk metallic glasses (BMG) from a viewpoint of their electronic structure and chemical bonding, we have investigated the correlation between their local atomic arrangements and electronic structures by combining soft X-ray emission spectroscopy with photoelectron spectroscopy and cluster calculation. Some results for Al-Co-M (M = Ni, Cu) two-dimensional QC's and Pd-based BMG are presented and discussed.

準結晶 QC とバルク金属ガラス BMG は、
いずれも並進対称性を持たず、結晶でない合金である。QC は高い回転対称性を有し、熱力学的に安定に存在するが、
BMG は熱力学的に不安定にもかかわらず結晶化へ大きな抵抗を示す。

これまでに、自由電子をもつこれらの 合金では、自由電子波と陽イオン分布と の干渉で生じる擬ギャップ電子構造によ って電子系のエネルギーが低下し、特異 な原子配置が実現すると提案されている。 一方、これらの合金は遷移金属 TM を多 く含み、構造安定性に対する TM d 電子 系の寄与も大きいと考えられる。

そこで我々は、放射光励起の軟 X 線発 光分光 XES と光電子分光 XPS (UPS)およ びクラスター計算とを併用してこれらの 物質の特異な原子配置の安定性について 電子構造の観点から調べている。ここで は、Al-Co-M (M = Ni, Cu) 2 次元 QC と Pd 基 BMG についてこれまでに得た結果 を紹介する。

XES 測定は、Photon Factory BL-2C お よび BL-11B で行い、XPS (UPS)測定は、 SPring-8 BL25SU、BL47XU および UVSOR-II BL5U にて行った。クラスタ ー計算には DV-Xα法による SCAT code を一部修正して用いた。

図1にAl-Co-NiのTM Lα XES および XPS スペクトルをクラスター計算の結果 と比較した[1,2]。計算に用いたモデルク

ラスターは、最近の電子顕微鏡観察結果 に基づいて TM を配置した2層構造をと る。2次元 QC では、この層状クラスタ ーが積層した 10 角形カラム様構造が "重なり規則"によって準周期的に配列 しているとも見なせる。電子顕微鏡観察 では Co と Ni を区別することが難しいが、 計算では Coと Ni による TM サイトの占 有の仕方によって TM 3d 状態密度分布 DOS が異なる。XES 測定の結果と比較 すると、クラスター中心を Co よりも Ni が占める、図1でTM1=Ni, TN2=Coと する配置(b)をとると考えられる。しかし、 配置(a)とのエネルギー差は小さく、互い のサイトを占めやすいだろう。実際、Co と Ni の組成比に依存してクラスター中

心の対称性の破れや準周期タイリングの 違いなどが報告されている。その意味で TM *Lα* XES の組成依存が興味深く、今 後の課題である。他方、計算結果の Al 部分状態密度には、フェルミエネルギー 近傍に擬ギャップが見られるが、放射光 を用いた XES 測定による検証はできて いない。

図2に Pd-Ni-P BMG の結果についてま とめた[3,4,5]。比較した計算は、結晶相 から抽出した Pd₃Ni₆P 三角プリズムクラ スターに対する結果である。P Kα XES スペクトルは、約 1 eV 高束縛エネルギ 一側へシフトしているように見えるが、 この原因はよく分かっていない。この測 定では光子エネルギーの較正に標準物質 との比較を用いた点が図1の TM Kα XES 測定における弾性散乱を用いた較正 と異なり、シフトの原因かもしれない。 しかし、全体的には、励起光子エネルギ ーに対する価電子帯 XPS (UPS)スペクト ルの形状変化とともに、XES スペクトル は計算結果とよく対応している。したが って、このガラス相にも P を中心とした 共有結合性の強い(Pd,Ni)₉P 局所構造が存 在すると考えられる。このクラスターは、 SiO₂ ガラス同様、その表面にある金属原 子を共有してクラスターのランダムネッ トワークを形成し、熱力学的に高い安定 性をもったアモルファス相を生み出すで あろう。実際、2つの(Pd,Ni)_oP クラスタ ーが面、辺、あるいは頂点を共有しても 電子構造は大きく変わらないことが計算 で示された。このように、共有結合性の 発達した単位構造(クラスター)形成に よる内部エネルギーの低下と単位構造が ランダムネットワークを形成する(エン トロピー増加)機構の存在とが安定なア モルファス相の出現に重要と思われる。 今後、P 周りに共有結合性が高い Pd 基 BMG と対比して、金属結合性も重要と なる Zr-Ni-Cu-Al などの Zr 基 BMG の電 子構造と相安定性の関係も明らかにした いと考えている。

放射光励起 XES は、励起光子エネル ギーが可変であり、弾性散乱光を用いて 発光分光計を較正すれば、より精度の高 い分析ができる。今回対象とした2次元 QC と Pd 基 BMG に対して XPS(UPS)で は d 電子系が強調されるため、Al や P な どの sp 電子系の高分解能 XES 測定が望 まれる。また、光子エネルギー可変性を 用いて共鳴現象が利用でき、非占有電子 構造を探ることも可能であろう。

本研究は、名古屋大学大学院工学研究 科の犬飼学、宮崎秀俊、太田俊二、鈴木 孝治、加藤政彦、八木伸也、長谷川正、 名古屋大学エコトピア科学研究所 竹内 恒博、東北大学金属材料研究所 和田武、 横山嘉彦、RIMCOF 西山信行、愛知教 育大学 佐藤洋一、豊田理化学研究所 水谷宇一朗、弘前大学 手塚泰久、大阪 府立大学 岩住俊明の各氏との共同研究 である。また、文部科学省科学研究費補 助金特定領域研究「金属ガラスの材料科 学」および名古屋大学 21 世紀 COE プロ グラム「同位体が拓く未来」から一部補 助を頂いた。ここに感謝の意を表す。

References

- [1] M. Inukai et al., Z. Kristallogr. to be published..
- [2] M. Inukai et al., Phil. Mag. 87, 3003 (2007).
- [3] S. Ota et al., Abst. 5th Int. BMG Conf. (2006).
- [4] D. Fukamaki *et al.*, J. Jpn. Soc. Powder Powder Metallurgy 54, 754 (2007).
- [5] K. Soda et al., Abst. 25th PF Symposium, (2008).

