2011年1月11日·12日 KEK 4号館2階輪講室

PF研究会「X線トポグラフィの現状と展望」

タンパク質結晶のX線トポグラフィ ー これまでの研究と今後 ー

横浜市立大学 澤浦拓也、沈夢遠、藤居大毅、橘 勝 横浜創英短期大学 若生啓 小島謙一

Content

Protein crystals

- Crystallization
- Assessment of crystal perfection
- Characterization of crystal defects

X-ray topography for protein crystals

- Critical condition for direct images
- X-ray topographs of protein crystals
- Analysis of image width
- Digital topography for assessment of crystal perfection

Yokohama

Nano-Materials Lab

- Digital topographs
- Locking curve analysis
- Mapping of Local rocking curves
- Neutron topography
 - JRR-3 & J-PARC experiments

Protein crystals

Sample conditions for X-ray topography

$\boldsymbol{\xi} = \frac{\pi V_C \cos \theta_B}{r_e \lambda F_{hkl} }$		ξ: Extinction distance V_{C} : Volume of unit cell F_{hkl} : Struture factor		 λ: Wavelength of X-ray θB: Bragg angle re: Radii of classical electron 	
Crystal (Reflection)	V _C (ų)	$ F_{hkl} $	µ (mm⁻¹)	ξ (mm)	0.4ξ < <i>t</i> < 1/μ (mm)
Si (3,-3,3)	160	37.9	1.365	0.062	0.024 < <i>t</i> < 0.732
Benzil (2,-2,0,0)	416	61.9	0.7	0.096	0.038 < <i>t</i> < 1.428
Tetragonal hen egg-white lysozyme (800)	237133	695	0.199	3.383	1.35 < <i>t</i> < 5.02

X-ray wavelegnths used in this calculation are 0.71 A, 1.54A and 1.41A for Si, benzil and tetragonal hen egg-white lysozyme. The Bragg angle are 20°, *** and 3.25° for Si, benzil and tetragonal hen egg-white lysozyme.

Large protein crystals of millimeter-size are needed !!

Synchrotron radiation X-ray topography

Monochromatic-beam topograph for a tetragonal HEWL crystal

Koishi et al. Cryst. Growth & Des., 7, 2182 (2007)

Slip dislocations in a tetragonal HEWL crystal

Slip dislocations might be easily generated due to a stress

Mukobayashi et al. Phys. Status Solidi A206,1825 (2009)

(001)<110>

Dislocation images for a larger orthorhombic HEWL crystal

THUR THUR THUS LAU.

Observation of double images of dislocations

 $0\bar{8}0$

 $\bar{4}\bar{4}0$

Theory of double images of dislocations

Widths of double images (Theory & Observation)

$$D = \frac{b_g}{\pi \,\delta\omega}$$

 b_g : Component of parallel to diffraction vector **g** for Burgers vector **b** $\delta\omega$: Full width at half maximum of rocking curve of perfect crystal

Poflection	δ(1) (°)	Width of image (µm)		
Renection	000 ()	Theory	Observation	
080	5.37 × 10 ⁻⁵	1.34 × 10 ³	<18 (single)	
440	5.76 × 10 ⁻⁵	1.77 × 10 ³	50 (double)	

The theoretical values are much larger than observed values by two-order !!

FWHMs of rocking curves (Theory & Measurement)

The difference in the dislocation image width can be explained by the larger rocking width of real protein crystals.

Nano-Materials Lab.

Why is digtal topogrphy

For exact assessment of crystal perfection, some methods should be used for "the same sample".

However, protein crystals are easily damaged for some handling and X-ray irradiation. Thus, it is desired that some methods are simultaneously applied for "the same sample".

Digital topograhy with CCD camera

X-ray topograph (Local distribution of defects)

Digital topography with CCD camera

Why is neutron topography

Protein crystals include a huge amount of water: 30-80 vol.%

Understanding the behavior of the water is very important

Neutron is very sensitive to water, or hydrogen atom

Neutron topography

Future works

More detailed understanding of dislocations in protein crystals

- More detailed analysis of topographic images of dislocations
- Modeling of atomic structure of dislocations
- In-situ observation of motion of dislocations
- Development of digital topography with CCD camera including analyzing
 - Assessment of perfection for various protein crystals
- Combination of X-ray topography and neutron diffraction topography, and others
 - Correlation between intra-crystalline water and dislocations in protein crystals

