PF研究会「X線トポグラフィーの現状と展望」 2011/1/11~1/12

<u>放射光トポグラフィーによる</u> SiC溶液成長における転位挙動解析

Analysis of dislocation characteristics in SiC by solution growth

名大院工¹, 産総研², <u>小澤 茂太¹</u>, ^O関 和明¹, 山本 祐治¹, Alexander ¹, 宇治原 徹¹, 山口博隆², 竹田 美和¹

Nagoya Univ.¹, AIST ², Shigeta Kozawa¹, ^OKazuaki Seki¹, Yuji Yamamoto¹, Alexander¹, Toru Ujihara ¹, Hirotaka Yamaguchi², and Yoshikazu Takeda ¹

E-mail: seki@mercury.numse.nagoya-u.ac.jp

高品質SiCバルク結晶に向けた溶液法への期待

溶液法で欠陥のない高品質SiC結晶を作製する。

SiC結晶欠陥について

C軸 イ ゴ 丁 丁 丁 丁 丁 丁 丁 丁		マイクロパイス	す して 中 し し し し し し し し し し し し し し し し し	通刃状転位底面転位	
名称	略称	名称(英語)	バーガーズ ベクトルの向き ^[1]	伝播方向	デバイスへの影響 ^[2]
マイクロパイプ	MP	Micropipe	〈0001〉	〈0001〉	リーク電流の原因
貫通らせん転位	TSD	Threading Screw Dislocation	〈0001〉	〈0001〉	耐圧劣化 酸化膜不良 エピ欠陥の発生
貫通刃状転位	TED	Threading Edge Dislocation	〈 11 – 20〉	〈0001〉	少数キャリアの ライフタイムキラー
基底面転位	BPD	Basal Plane Dislocation	〈 11 – 20〉	(0001) 面内任意	順方向特性劣化 酸化膜不良

[1] 土田 他, SiC及び関連ワイドギャップ半導体研究会 第16回講演会 予稿集 p. 6, [2] 大谷 他, SiC及び関連ワイドギャップ半導体研究会 第17回講演会 予稿集 p. 8.

結晶評価法(放射光トポグラフィー)

原子核乾板

波長 [nm]	回折面	侵入深さ[µm]
0.179	(11–2·12)	18
0.150	(11–2·12)	11
0.128	(11–2·12)	5

BL-15C (PF、KEK)

結晶評価法(熱塩素エッチング)

放射光トポグラフィーと

熱塩素エッチングを組み合わせた

溶液法SiCの転位挙動観察

SiC溶液成長法

結晶評価(放射光トポグラフィー) on-axis基板

溶液成長前後の転位を比較し、挙動を観察した。

結晶評価(TSD挙動解析)

[11-20]

on-axis基板

溶液成長条件 種結晶on-axis基板、成長温度1630 ℃、成長時間5 hr、成長厚み 88 µm [0001] Si面 ◉━━ [1–100] トポグラフ撮影条件 反射面(11-2·12)、λ=0.150 nm、入射角10.8 °侵入深さ約11 μm 種結晶のトポグラフ像 溶液成長後のトポグラフ像 溶液成長 50 µm 50 µm

> TSDの一部が消え、同じ場所に軌跡が存在していた。 軌跡が他のTSDにつながっているものも存在した。

成長後TSDが見られなくなり、代わりに軌跡が観察された。

結晶評価(BPD挙動解析)

on-axis基板

種結晶のBPDが引き継がれていない。 さらに、新しいBPDが形成されていない。

BPDは溶液成長では形成されないと考えられる。

結晶評価(トポ像と表面モフォロジーの対応) on-axis基板

溶液成長条件 種結晶on-axis基板、成長温度1630 ℃、成長時間5 hr、成長厚み 88 µm トポグラフ撮影条件 反射面(11-2·12)、λ=0.150 nm、入射角10.8 °侵入深さ約11 µm

溶液成長後のトポグラフ像

50 µm

50 µm

軌跡の方向とステップフロー方向が一致している。

TSD挙動考察

SiC結晶評価(オフ基板上成長) 1.4°off基板

成長後、部分的に、TSDが存在していた場所に軌跡が存在していた。 軌跡が他のTSDにつながっているものが存在した。 軌跡はステップフロー方向に沿っていた。

オン基板上成長に比べ、TSDは減少し、軌跡は増加した。

SiC結晶評価(エッチングとトポグラフ比較) 1.4°off基板

小さいエッチピットの一部は軌跡上に存在している。

軌跡とエッチピットの関係考察

50 µm

①転位がステップフローに よって曲げられる。

②曲げられている間に転位が分裂、 または、軌跡上に新たな転位が 発生すると考えられる。

1.4°off基板

③トポグラフでは軌跡が観察され、 エッチングでは軌跡上に複数個の エッチピットが観察される。

今後の展望

- ・別の回折面でのトポグラフ撮影を行う。
- •TEMによる転位の解析を行う。
- ・エッチングと研磨により、軌跡上のエッチピットを調べる。

謝辞: 放射光トポグラフィーにおいてご尽力頂いた 産業技術総合研究所、松畑洋文氏、加藤智久氏、高エネルギー加速器研究機構 平野馨一氏、吉村順一氏に深く感謝致します。(共同利用実験 課題番号2009G118 (BL-15C)) 本研究は特別研究員奨励費(JSPS)、NEDO(若手グラント)および日仏交流促進事業(SAKURAプログラム、JSPS、MAE)により実施し ました。