共鳴散乱を利用したトポグラフ

根岸利一郎¹,深町共榮¹,平野健二¹,金松喜信¹,平野馨一²,川村隆明³ ¹埼玉工業大学,²KEK-PF,³山梨大学 *E-mail: negishi@sit.ac.jp

1)吸収端付近での結晶構造因子とロッキングカーブ

(GaAs 200, Laue の場合)

2)実験の光学系

3) 散乱条件と結晶構造因子の位相変化

4)結晶構造因子の位相母の変化とロッキングカーブの変化

5) 共鳴散乱を利用したトポグラフ

①鮮明な像と干渉縞

②転位に対応した像

6)回折像とSEM(走査電子顕微鏡)像との対応 7)まとめ

K吸収端付近での結晶構造因子とロッキングカーブ

散乱条件と結晶構造因子の位相変化

共鳴散乱動力学回折から

 $F_{h} = F_{hr} + iF_{hi} = |F_{hr}|(1+k^{2})^{1/2} \cdot \exp[i\{\arg(F_{hr}) + \theta\}]$

2波近似の分散面の規定からの散乱条件は円周とその内部 $F_{hr} \stackrel{\uparrow}{=} F_{hi}$ 散乱条件 $\mathbf{D} | \pi/2$ |F_h|=|F_{-h}| での<u>散乱条件</u>は円周上 DA CD $\delta = 0$ $F_{h}F_{-h}/(|F_{hr}|^{2}+|F_{hi}|^{2})=e^{i2\theta}$ 2θ A A' $\theta = \tan^{-1}(k \cdot \cos \delta)$ $\frac{\pm \pi}{F_{hr}=0}$ $k = \frac{|F_{hi}|}{|F_{hr}|}$ $F_{hi} = 0$ $\delta = \pi$ AB BC $\mathbf{B} \mid -\pi/2$ $F_{hr} = -F_{hi}$ ⇒ ロッキングカーブ測定から

共鳴散乱の変化 ⇔ 結晶構造因子の位相θの変化 ⇒ 構造評価に利用, 位相決定

3

実験の光学系 (KEK-PF BL-15C)

結晶構造因子の位相(θ)変化とロッキングカーブの変化

共鳴散乱を利用したトポグラフ

SIT Saitama Institute of Technology

鮮明像はこの F_{hr} だけの回折に特有か?

鮮明像の利用: 縞間隔と回折角変化⊿θの対応像

6sec差 欠陥周辺の歪を反映した干渉縞

SEM(走査電子顕微鏡)像のX線入射面と出射面

結晶厚:121µm

研磨してH₂SO₄:H₂O₂:H₂O=5:1:1にてエッチング後,X線入射側からSEMで観察

入射面

出射面

出射面には特段の像は見えない

SEM(走査電子顕微鏡)像

SEM(走査電子顕微鏡)像(拡大)

らせん転位像

回折像とSEM像との対応1

 $F_{\rm hr}$ tit($F_{\rm hi}$ =0)

回折像とSEM像との対応2

 F_{hi} t
t
(F_{hr} =0)

回折像とSEM像を重ねる

F_{hr}だけの回折とSEM像

F_{hi}だけの回折像とSEM像

欠陥の2種類の回折像と転位のSEM像は重なる

まとめ

共鳴散乱を利用した X-線トポグラフでは,

1) **F**_{hr}だけの回折像は,

○吸収結晶でも,最も鮮明なトポグラフ像が得られる。

○欠陥部周辺では欠陥による歪みを反映した干渉縞が観測され、 縞間隔は欠陥から遠ざかるに従って広がる。

○干渉編は微小な*△*θ_Bの変化に伴って位置が変化する。

2) F_{hi}だけの回折像は,転位の中央部の回折が相対的に強い。

3) 共鳴散乱を利用したトポグラフは転位が特定しやすい。