PF研究会「磁性薄膜・多層膜を究める」

Fri-Sat. 14-15, Oct 2011

深さ分解XMCD法で切り開く 分子吸着Fe/Cu(001)の磁気構造 -EXAFSによる薄膜構造解析と併せて-

<u>阿部仁1*</u>, 雨宮健太1, 酒巻真粧子1, 香西将吾2, 中山丈嗣2, 近藤 寬2

¹KEK-PF, ²慶應大

*: hitoshi.abe@kek.jp

Keio University

Magnetism of Fe/Cu(001) films

PRL 69, 3831 (1992), etc.

Magnetic thin films, Molecular adsorption

Sum rules: XMCD spectra and magnetic moments

CO adsorption on Fe/Cu(001)

(CO molecules adsorb on atop sites.)

The magnetization of top layers disappears upon CO adsorption.

PRB 77, 054409 (2008)

$m_{\rm s}^{\rm eff}$ of Fe/Cu(001), CO adsorption

Fe	ML	Clean	CO ad.	
	2	2.3 μ _B , ⊥	2.3 µ _B , ⊥	No change
Regime I	3	2.4 μ _B , ⊥	1.5 μ _B ,	Mag. decrease
			2/3	SRT to In-plane
	4	2.5 μ _Β , ⊥	1.1 μ _B , //	Mag. decrease
			1/2	SRT to In-plane

⊥ : Perpendicular // : In-plane

A model to simulate the magnetic structure

a: interlayer distance

The depth profile of m_s of CO/Fe(4 ML)/Cu(001)

PRB 77, 054409 (2008)

XMCD: Fe 4 ML, CO adsorption

PRB 77, 054409 (2008)

Apparent magnetization decrease

- 1. Cu(001) keeps the magnetization of adjacent Fe two layers.
- 2. Adsorbed CO vanishes the magnetization of top two layers at most.

Motivation: to reveal film structures by EXAFS

to discuss the relationship between the anomalous magnetism and the structure

about EXAFS

Procedure of EXAFS Analysis

Fluorescence yield EXAFS experiment

to study the structures of the films

at PF BL-7C

Fe K-edge EXAFS CO/Fe(2, 4 ML)/Cu(001) NO/Fe(2, 4 ML)/Cu(001)

 I_0 ion chamber

🔨 X-ray

SSD

Fe-K EXAFS, FEFF simulation

Obtained EXAFS functions

Fourier Transforms of $\chi(k)$

Curve fit for Fe 2 ML, CO-ad.

Sample	model	CN	Radius	R-factor	Conclusion
Fe 2ML	fcc	4.61	2.55	0.038	fcc
	bcc	3.56	2.49	0.205	
	fcc & bcc	4.30	2.55	0.019	
		0.31	2.47		
CO/Fe 2 ML	fcc	4.52	2.56	0.116	fcc
	bcc	3.30	2.50	0.231	
	fcc & bcc	4.43	2.56	0.091	
		2.04	2.38		
too short					

Curve fit for Fe 4 ML, CO-ad.

Sample	model	CN	Radius	R-factor	Conclusion
Fe 4ML	fcc	6.51	2.53	0.061	
	bcc	5.78	2.48	0.207	fcc
	fee & bee	5.12	2.53	0.036	
		1.96	2.51		
CO/Fe 4 ML	fcc	6.56	2.55	0.124	fcc
	bcc	6.72	2.49	0.183	
	fcc & bcc	4.08	2.56	0.074	+
		3.00	2.47		bcc

Strained bcc structure observed by STM

Fe/Cu(001)

A. Biedermann, et al., Appl. Phys. A 78, 807–816 (2004)

strained bcc: models, $k^2\chi(k)$, FT

CO/Fe(4 ML)/Cu(001) curve fit results

geometry	model	CN	Radius	R-factor	
NI(90°)	fcc +	5.53	2.548	0.042	000
	strained bcc(15 °)	1.23	2.558		90°
	fcc +	4.69	2.555	0.022	
	strained bcc(10 °)	1.73	2.652	0.025	
	fcc + strained bcc(5 °)	4.74	2.555	0.023	
		1.53	2.588		
GI(30°)	fcc +	3.77	2.569	0.011	80°
	strained bcc(15°)	0.97	2.798	0.011	
	fcc + strained bcc(10 °)	3.74	2.563	0.014	10°
		1.95	2.697		
	fcc + strained bcc(5°)	Not converged			

Possible model of structures of the films

Before CO ad. : fcc

Probably Changed to be fcc + strained bcc

...though further precise analyses are required.

Before going to our EXAFS results of CO/Fe/Cu(001)...,

NO adsorption on Fe/Cu(001)

Antiferromagnetic coupling at the surface

NO: Linear hetero-diatomic molecule, as same as CO One more electron than CO

=> may affect on electronic structure more

NO adsorption on Fe(4 ML)/Cu(001)

$m_{\rm s}^{\rm eff}$ of Fe/Cu(001), NO adsorption

ML	Clean	NO ad	cf. CO ad
2	2.5 μ _B , ⊥	~0 µ _B	2.3 μ _B
3	2.5 μ _B , ⊥	0.9 μ _B ,	1.5 μ _B
		1/3	(2/3)
4	2.5 μ _B , ⊥	1.2 μ _B , //	1.2 μ _B
		1/2	(1/2)

The results are similar to the CO's case but not the same.

⊥: Perpendicular //: In-plane

Possible models to express the decrease

Model 1: **Demagnetized model**, The magnetization of the surface two layers disappears. Model 2: **AFM coupling model**, Antiferromagnetic between the surface two layers (The topmost layer:

Which is true?

opposite direction.)

A turn of the depth-resolved XMCD method!!

Obtained m_s^{eff} , NO/Fe(4 ML)/Cu(001)

Obtained m_s^{eff} , NO/Fe(3 ML)/Cu(001)

The reason of the apparent decrease of magnetization

The topmost spin aligns in the opposite direction.

(Antiferromagnetic coupling between the top two layers)

Summary

Anomalous surface magnetic states and their structure

NO or CO adsorption: SRT to in-plane magnetization

- Adsorbed CO demagnetizes the top layer(s) of Fe/Cu(001).
- The surface of CO/Fe(4 ML)/Cu(001) probably changed from fcc to strained-bcc structure.
- The m_s^{eff} of Fe topmost layer aligns in the opposite direction to that of the other layers upon NO adsorption.

(Antiferromagnetic coupling in the surface two layers)

