PF研究会「磁性薄膜・多層膜を究める:キャラクタリゼーションから新奇材料の創製へ」 2011年10月14,15日

XMCDを用いた磁性薄膜の研究

藤森 淳

(東京大学理学系研究科)

門野利治, V. R. Singh, 石上啓介, V. K. Verma, 芝田吾朗, 原野貴幸 (東大理) PF BL-16A2: 小出常晴, 朝倉大輔, 雨宮健太, 酒巻真粧子 (物構研PF) SPring8 BL23-SU: 竹田幸治, 岡根哲夫, 斎藤祐児 (原子力機構) TLS BL-11A1: F. H. Chang, H.-J. Lin, D.-J. Huang, C. T. Chen (NSRRC, Taiwan) 多重項計算, クラスター計算: 田中 新 (広大先端物質)

x rav

概要

- 測定原理,特徵
- 一希薄磁性半導体薄膜 ^{____2}p-3d XMCD σ⁺
 - CrドープCd_{1-x}Mn_xTe: 黒田眞司, 石川 弘一郎, 金澤 研(筑波大) <u>-2</u> m_d 一磁気トンネル結合界面

ホイスラーCo₂MnGe/MgO/Co₂MnGe:山本眞史, 平智幸, 石川貴之(北大情報) 一酸化物薄膜

SrRuO₃, La_{1-x}Sr_xMnO₃:組頭広志(物構研PF),吉松公平,尾嶋正治(東大工) ・ 今後の展望

X-ray magnetic circular dichroism (XMCD) in core-level x-ray absorption spectroscopy (XAS)

Ferromagnetic and paramagnetic components in magnetization and XMCD signals

SQUID data of thin film sample

M-H curve

Surface- and bulk-sensitive detection modes of XAS and XMCD measurements

Prototypical diluted magnetic semiconductor Cd_{1-x}Mn_xTe

Cd²⁺Te \longrightarrow Cd²⁺_{1-x}Mn²⁺_xTe: Giant Faraday rot. \rightarrow Optical isolators

Prototypical diluted magnetic semiconductor Cd_{1-x}Mn_xTe

Magnetic susceptibility

R. R. Galazka, et al., PRB '80

Enhanced magneto-optical properties of Cd_{1-x}Mn_xTe by Cr doping

Faraday rotation

Enhanced magnetic and magneto-optical properties of Cd_{1-x}Mn_xTe through Cr doping

Vis-MCD vs H curves

Magnetization vs H curves

S. Shen et al., APL '09

 \rightarrow Cd_{0.76}Mn_{0.20}Cr_{0.04}Te/GaAs (001)

H= 5T, *T*=15K, TFY mode @ KEK-PF BL-16A

Mn and Cr $2p \rightarrow 3d$ XMCD of Cd_{1-x-y}Mn_xCr_yTe

Mn and Cr $2p \rightarrow 3d$ XMCD of Cd_{1-x-y}Mn_xCr_yTe

XMCD intensity vs H

XMCD intensity vs Cr content

Co₂MnGe/MgO/Co₂MnGe magnetic tunnel junction

Mn 2p core-level XMCD of Co₂MnGe/MgO

Co 2p core-level XMCD of Co₂MnGe/MgO

Research directions with oxide thin films

Metal-to-insulator transition in SrVO₃ with decreasing film thickness

Metal-to-insulator transition in SrRuO₃ with decreasing film thickness

Concomitant ferromagnetic-toparamagnetic transition in SrRuO₃ thin films

Temperature (K)

M. Takizawa et al.

Ru $3p \rightarrow 3d$ XMCD of SrRuO₃ thin films near critical thickness

LDA+U calculation of SrRuO₃ thin films

Metal-to-insulator transition in La_{1-x}Sr_xMnO₃ with decreasing film thickness

Mn $2p \rightarrow 3d$ XAS and XMCD of La_{1-x}Sr_xMnO₃ thin films

X-ray absorption spectroscopy (XAS) spectra

X-ray magnetic circular dichroism (XMCD) spectra

Mn $2p \rightarrow 3d$ XMCD of La_{1-x}Sr_xMnO₃ thin films

XMCD intensity vs H

Summary of oxide thin films

- Metallic transition-metal oxide undergoes an MIT with decreasing film thickness. Critical thickness for MIT is: ~3-4 ML (SrVO₃, SrRuO₃) ~6-8 ML (La_{1-x}Sr_xMnO₃)
- Orbital states evolve as:
 Band metal → Quantum well → Orbital ordering
- Spin states evolve as: $PM \rightarrow intermediate phase? \rightarrow AFI (SrVO_3)$ $FM \rightarrow FM(+AFM?) \rightarrow AFI (SrRuO_3)$ $FM \rightarrow H-induced CAFI? ... \rightarrow AFI (La_{1-x}Sr_xMnO_3)$ MIT

Summary

- ・希薄磁性半導体薄膜: CrドープCd_{1-x}Mn_xTe
 - Mn-Cr間の強磁性的相互作用, Crから離れたMnの常磁性(+反強磁性) 的な振る舞いが見出された.
- 磁気トンネル結合界面:ホイスラーCo₂MnGe/MgO/Co₂MnGe
 TMRを劣化させるCoアンチサイトの大きなスピンモーメント,TMRを劣化 させないMnアンチサイトの逆向きスピンモーメントが確認された.
- ・酸化物薄膜: SrRuO₃, La_{1-x}Sr_xMnO₃
 - 薄膜化による強磁性と金属性の同時消失は,軌道整列・反強磁性状態の出現による?

高速偏光スイッチングアンジュレータ

円二色性: 左右円偏光に対するシグナルの差 直流(DC)測定では 1%程度が検出限界

偏光の交流スイッチング

- ⇒ 10⁻⁴-10⁻⁵の円二色性・線二色性の観測
 - ※ 現時点での報告例: 10⁻³ 程度 (1 Hz利用)

スイッチング周波数: 10 Hzを確実に実現 100 Hzを目指した技術開発

量子ビーム基盤技術開発プログラム 「軟X 線の高速偏光制御による機能性材料の探究と創製」@KEK-PF

ベクトル型マグネットと高速偏光スイッチング を用いたXMCD

基盤研究S「多自由度放射光X線二色性分光による強相関系界面新規電子相の研究」

方向可変磁場を用いたXMCD

La_{1-x}Sr_xMnO₃薄膜の磁気異方性

K. Yoshimatsu et al., APL '09

G. Shibata et al.

Ga_{1-x}Mn_xAs(薄膜試料)の磁気異方性

スピン-軌道相互作用に起因するSrRuO₃薄膜の 異常な磁気異方性

Magnetization measured by SQUID

K. Terai et al., JJAP '04