

PF研究会@12.03.2011

スピン分解光電子分光による磁性薄膜の研究

東京大学物性研究所・柿崎明人

Outline

(1) Introduction

- Principles of <u>spin-resolved photoelectron</u> <u>spectroscopy</u> (SARPES)

(2) SARPES spectra of magnetic thin films

(3) Recent topics of SRPES experiments

- A new spin polarimeter adopting VLEED

(4) Future perspectives

Schematics of photoelectron spectroscopy

Principles of spin-resolved photoemission experiments

Correlation effects in SARPES of Ni(110)

Temperature dependence of SRPES spectra of Ni and Fe

Structure of Fe films grown on non-magnetic materials

bcc Fe(110)	Fe/Au(001) a = 4.07 A	Fe/Ag(001) a = 4.08 A	2.86 ξ √ 2 = 4.05 Α		
fcc Fe(100)	Fe/Cu(001) a = 3.54 A	Fe/Co(001) a = 3.61 A		strain	dislocation
fcc-bcc Fe	Fe/Pd(001) a = 3.89 A	Fe/Rh(001) a = 3.80 A	Fe/Cu₃Au fcc < 7ML	strain dislocation lattice mismatch	strain dislocation layer thickness
	bcc > 10ML	bcc or fcc			

Energetics of bcc and fcc Fe

V.L.Moruzzi et al. PRB 37, 8003 ('88)

energetics : chemical bonding (bandwidth), magnetic interaction surface energy, interfacial energy, etc.

Fe 2p_{3/2} XPD patterns observed in Rh(010) and (110) plane

Angle- and spin-resolved photoemission spectra

Structure and magnetism of Fe films grown on Cu(001)

J. Thomasson et al. PRL 69, 3832 ('92)

Kamakura et al., PRB 73, 094437 (2006)

Reorientation of magnetization direction depending film thickness

Characteristics of spin-polarimeters

spin-polarimeter	energy	S _{eff}	1/1 ₀	figure of merit (ε)
Conventional Mott [1]	100 keV	0.20	2.9 x 10 -3	1.1 x 10 ⁻⁴
Compact Mott [2]	25 keV	0.14	9.7 x 10 ⁻³	1.9 x 10 -4
SPLEED [3]	150 eV	0.19	2.2 x 10 ⁻³	8.0 x 10 -5
Diffuse Scattering [4]	150 eV	0.11	9 x 10 ⁻³	1 x 10 ⁻⁴

J. Fujii, Ph. D Thesis, Univ. Tsukuba (1994)
S. Qiao *et al.*, RSI 68, 4390 (1997).
G.-C. Wang *et al.*, PRB 23, 1761 (1981).
J. Unguris *et al.*, RSI 57, 1314 (1986).

Examples of spin-resolved photoemission spectra

A. Kakizaki *et al.*, Phys. Rev. B 55, 6678 (1997).

Rashba split surface energy bands in Bi(001)

EA-125 + 25 keV Mott

∆E ~110 meV

 $\Delta\theta = \pm 1^{\circ}$

T. Hirahara et al., Phys. Rev. B 76, 153305 (2007).

Valence band satellites in Ni(110) SHA50 + 25 keV Mott $\Delta E \sim 200$ meV $\Delta \theta < 2^{\circ}$

Schematic of VLEED detector

VLEED detector utilizes difference in reflectivity between spin-up and spindown electrons.

Asymmetry (A) shows maximum or minimum at the band edges of unoccupied states.

For Fe(001) target A ~ 0.2 and R ~ 0.1 at Ek ~ 10 eV.

 $\mathcal{E} \sim R \times A^2 \sim 4 \times 10^{-3}$

Development of new VLEED spin-polarimeter

---> stable target for VLEED, Fe(001)-p(1x1)O

Okuda et al., RSI 79, 123117 (2009)

Rashba spin-splitting in surface states

M. Hoesch et al., PRB 69, 142401(R) (2004).

ARPES of $\sqrt{3} \times \sqrt{3}$ Bi/Ag system

Hybridization between QWS of Ag and spin-split SS of Bi

Hybridization between spin-degenerated QWSs and Rashba spin-split SSs

Is the gap spin-dependent?

K. He et al., Phys. Rev. Lett. 101, 107608 (2008)

Spin- and angle-resolved photoemission spectra of $\sqrt{3} \times \sqrt{3}$ Bi/Ag

Electronic structure of Bi_{1-x}Sb_x

From L. Fu and C. L. Kane PRB, **76**, 045302 (2007)

- is there any x-dependence in surface states?

Spin-resolved photoemission spectra of Bi_{0.87}**Sb**_{0.13}

Odd number of Fermi level crossing between Γ and M in the Brillouin zone

Summary

SRPES of magnetic thin films --Fe/Rh(001), Co/Au(111))-magnetic properties of surfaces, magnetic anisotropy, etc.

A new spin-resolved photoemission spectrometer adopting VLEED

 $S_{eff} = 0.30, \varepsilon = 1.9 \times 10^{-2}$ at $E_k = 6 \text{ eV}, \Delta E \sim 30 \text{ meV}$ Precise analyses of spin-dependent electronic structures of solid surfaces and thin films

High-resolution spin- and angle-resolved photoemission spectra of spin-dependent surface electronic states Spin-dependent edge states of a topological insulator Rashba spin-split surface states

Future perspectives

(1) Spin-resolved photoelectron spectrometer

- energy resolution $100 \text{ meV} \rightarrow \text{below } 10 \text{ meV}$
- angle resolution $0.1^{\circ}(0.01 \text{ A}^{-1}) \rightarrow 0.01^{\circ}(0.001 \text{ A}^{-1})$
- spatial resolution $1 \ \mu m \rightarrow 0.01 \ \mu m$
- efficiency (figure of merit) $10^{-4} \rightarrow 10^{-2}$

(2) Future experiments with spin-analysis of photoelectrons

- time resolved experiments (with pump & prove laser)
- spectroscopy with polarized electrons
- combination with photoelectron microscopy