PF研究会「磁性薄膜・多層膜を究める:キャラクタリゼーションから新奇材料の創製へ」 2011年10月15(14-15)日@KEK-PF小林ホール

放射光光電子分光によるLa_{0.6}Sr_{0.4}MnO₃/SrTiO₃ スピントンネル接合界面の電子状態解析

組頭 広志 KEK-PF(物構研&構造物性研究センター) JSTさきがけ

Motivation

In actual TMR devices, the performance is far worse than what is expected from these physical properties.

Small TMR ratio

Magnetic "dead layer" formation at the STO/LSMO interface

Advantage of SR-PES

Resonant PES Approach

Resonant PES of LSMO (x=0.4)

Probing Electronic Structure at the Interface (Mn 3*d* PDOS)

RHEED Pattern & AFM Images С Α Β D 1 **x** 1 μm Α С Β D 2 ML

1 ML LSFO x=0.4 LSMO x=0.4 (20 ML)

Nb-STO substrate

LSMO

x=0.55

Spectral Evidence of Charge Transfer at LSMO/LSFO Interface

H. Kumigashira et al., Appl. Phys. Lett. 84, 5353 (2004).

XAS Spectra of Interfacial LSFO Layer

Comparison of Fe-2*p* XAS spectra between Interfacial LSFO layer and LSFO films

Charge-Transfer at Interface

Origin of Charge Transfer

Charge redistribution at interface

C. T. from AO Layer to BO, Layer

LSMO/STO interface (Valence mismatch)

LSFO/LSMO interface (Charge transfer between TM ions)

How does the band diagram modulates by changing the terminating layer at the interface?

Work functions of termination controlled STO and LSMO

Built-in potential of termination controlled LSMO

The direction of interface dipole changes depending on the terminating layer.

Origin of the interface dipole

Origin of the interface dipole

Origin of the interface dipole

M. Minohara, H.K. et al., Phys. Rev. B 81, 235322 (2010).

まとめ

ABO₃/LSMO接合界面の電子状態について調べるために放射 光電子分光を行った。

<u>ヘテロ界面の化学状態</u>

LSFO/LSMO: FeとMnイオン間の電荷移動

STO/LSMO: TiとMnイオン間の電荷移動は 起こらず、Ti⁴⁺状態を維持(Mn側が収納)

遷移金属イオンの3d準位の相対位置、 およびFillingが重要。

<u>ヘテロ界面のバンドダイアグラム</u>

LSMO/TiO₂-STO: 0.5 eVの界面ダイポール形成 LSMO/SrO-STO: -0.4 eVの界面ダイポール形成(界面ダイポールの反転)

静電ポテンシャルの発散を抑制するために、Mn側の価数が変調

遷移金属イオンの3d準位位置、AO層の電荷量、終端面を考慮した界面設計