磁気円二色性で探る分子・ナノ炭素−磁性金属系のスピン状態

松本吉弘¹, 圓谷 志郎¹, 北条育子², 藤川高志², 横山利彦³, 境 誠司¹

原研先端基礎¹, 千葉大融合², 分子研³

E-mail: matsumoto.yoshihiro@jaea.go.jp

近年、グラフェン等のナノ炭素物質や有機分子のスピントロニクスへの応用(分子スピントロニクス)が検討されている。これと関連して、我々は、C₆₀-Co化合物中にCoナノ結晶粒が分散した構造のグラニュラーC₆₀-Co薄膜において、C₆₀-Co化合物で隔てられたCoナノ結晶粒間を伝導電子がトンネルすることにより巨大なトンネル磁気抵抗(TMR)効果(磁気抵抗率(MR= $\Delta R/R_{min}$) = ~1000%)が生じることを発見した[1,2]。本講演では、同効果の電子的要因を明らかにすることを目的に、グラニュラーC₆₀-Co薄膜中のC₆₀-Co化合物/Coナノ結晶界面のモデル構造として、Ni(111)薄膜上にC₆₀-Co化合物(膜厚: 3nm, 5nm)を積層した二層膜を作製し、X線吸収(XAS)・磁気円二色性(XMCD)分光による電子・スピン状態の解析を行った。

Fig. 1a に面内磁化した Ni(111)薄膜上の C₆₀-Co 化合物薄膜(膜厚:3nm)について測定した Co L 端励起 XAS・XMCD スペクトル(外部磁場 H = 0 kOe)を示す。比較の為、Fig. 1b に外部磁場($H = \pm 5$ kOe)を加え た条件で測定した非磁性金属(Ag)上の C₆₀-Co 化合物(膜厚:30nm)のスペクトルを示す。Ni 薄膜、及び、 Ag 薄膜上の C₆₀-Co 化合物の双方で複数成分からなる XAS スペクトルが観測された。これは、C₆₀-Co 化合物中での Co 原子-C₆₀分子間の共有結合(π -d 混成軌道)による Co 3d 準位の多重項分裂に起因する。 さらに、双方で観測された XMCD ピークは、同準位にスピン偏極した局在電子(局在 d-スピン)が存在す ることを示している[3]。Ag 上の C₆₀-Co 化合物(30nm)が、磁場中のみで局在 d スピンの常磁性的な応答 による弱い XMCD シグナルを生じるのに対して、Ni 上の C₆₀-Co 化合物(3nm)は、Ni が磁化された状態 では、外部磁場の有無に係わらず強い XMCD シグナルを示すことが明らかになった。このことは、C₆₀-Co 化合物/Ni(111)二層膜では、界面を介して C₆₀-Co 化合物と Ni の層間に強磁性的な交換結合が作用するこ とを意味する。

グラニュラーC₆₀-Co 薄膜の TMR 効果に関する最近までの研究で、磁気抵抗率の磁場に対する応答 が Co ナノ結晶の磁化曲線と対応する振る舞いを示す一方で、磁気抵抗率の大きさは、Co 結晶の伝導電 子のスピン偏極率(約 40%)では説明できないほど大きいことが明らかになった[2-4]。本研究の結果を踏

まえると、同薄膜の巨大な TMR 効果は、交換結合した C₆₀-Co 化合物/Co ナノ結晶界面で伝導電子に高いス ピン偏極が誘起され、Co ナノ結晶の磁化方向に応じた スピン依存トンネリングを生じるために発現するこ とが推察される。講演では、Ni 上の C₆₀-Co 化合物層 厚による XAS・XMCD スペクトルの変化等を含む詳 細な実験結果を報告する。

[1]S. Sakai *et al.*, APL **89** (2006) 113118 and **91** (2007) 242104. [2]I.
Sugai et al., JAP **108** (2010) 063920. [3]Y. Matsumoto et al., CPL **470** (2009) 244. [4]S. Sakai *et al.*, un-published.

