Application of Anomalous Small-angle X-ray Scattering and Contrast Variation methods to Iron Storage Protein Ferritin Molecule

猪子洋二¹*、遠藤秀之¹、片岡義嗣¹、渡邊康² Yoji INOKO¹*, Hideyuki ENDOU¹, Yasushi WATANABE²

¹Graduated School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan ²National Food Research Institute, Tsukuba, Ibaraki 305-8642, Japan *e-mail: Inoko@bpe.es.osaka-u.ac.jp

多成分系生体高分子の構造解析

生体高分子溶液のX線小角散乱測定 においてその情報量を増やすため、コ ントラストバリエーション法、異常分 散法や重原子修飾法などが組み合わさ リポ蛋白質やヌク れることがある。 レオソームなどの相互に異なった電子 密度を持つ多成分系の複合体分子の場 合には、コントラストバリエーション 法は極めて有効に働く。 また、成分 として重金属元素を局在してあるいは 周期的に含む場合は異常分散効果の利 用が現実的となってくる。 何れの方 法も特定成分からなる領域あるいは構 造の抽出が可能となる。

鉄貯蔵タンパク質・フェリチン

フェリチンは動植物からバクテリア

図1.フェリチンの鉄イオン取り込みの概 念図。2種類のサブユニト(H-鎖とL-鎖) 24個からなるヘテロポリマー。

まで広く普遍的に存在し、鉄元素の代 謝に関わるタンパク質の一つで、鉄元 素の貯蔵と無毒化に寄与している。 構 造は、24 個のサブユニットから成る球 殻状をしており、外形は約 13nm、内径 は約 8nm で分子量は約 470kDalton であ この球殻の内空に細胞内の反応 る。 性の高い Fe²⁺イオンを取り込み不活性な Fe³⁺イオンに酸化して最大 4500 個の鉄 元素を貯蔵する能力を持つ。 フェリ チンのタンパク質部分においては様々 な種のアポフェチンでその結晶構造が 明らかにされているが、球殻内に蓄積 されるオキシ水酸化鉄(FeOOH) 凝集 体(いわゆる鉄コア)部分の様態につ いては不明のままである。 このよう にフェリチンが著しく電子密度の異な るタンパク質球殻と鉄コアからなる2 成分系の超分子であるためコントラス トバリエーション法と異常X線散乱法 が効果的に応用できると期待される。 以下では、フェリチンの鉄イオン取り 込みに伴う鉄コアの生成と成長過程を 見るため、種々の鉄含有量の再構成フ ェリチンに対してコントラストバリエ ーションおよび異常X線小角散乱実験 で鉄コアの構造抽出を試みた。

コントラストバリエーション実験

X線によるコントラストバリエーション実験では得られる構造情報として

分子の平均電子密度と内部の電子密度 の不均一性(ゆらぎ)構造が挙げられ る。

フェリチンの場合を考えると、アポフ ェリチンと様々な鉄含有量のフェリチ ンについて夫々の平均電子密度、 ρ_{apo} 、 ρ_{fm} 、が得られ、溶媒の電子密度が ρ_{apo} に等しいマッチングポイントでは鉄コ アの慣性半径 R_{core} が得られる。また、 各コントラストでのアポフェリチンと フェリチンの慣性半径、 R_{apo} 、 R_{fm} が求 まる。 これらの値から式1に基づい て鉄コアの平均電子密度、 ρ_{Fe} 、を直接 に算出できる。

 $\rho_{\text{Fe}} = \alpha \rho_{\text{apo}} \rho_{\text{ftn}} / ((1 - \alpha) \rho_{\text{apo}} - \rho_{\text{ftn}})$ (1) $\left[\alpha = (R_{\text{apo}}^2 - R_{\text{ftn}}^2) / (R_{\text{ftn}}^2 - R_{\text{Fe}}^2) \right]$

含有鉄元素量に対するフェリチンと鉄 コアの慣性半径 R_{fn} 、 R_{Fe} の変化を図2 に示す。 R_{Fe} は取り込んだ鉄量に比例 して雪だるまのように径が大きくなる、 いわゆる、'crystal growth'モデルの変

図2.鉄元素取り込みに伴うフェリチンと殻 内鉄コアの慣性半径の変化。破線は 'crystal growth'モデルに従った場合の変化。

化とは異なる。 ρ_{Fe} も一定でなく、鉄 量に依存して $0.8 \sim 1.4 e^{-3}$ の範囲で増加 する結果となっている。

X線異常散乱実験

鉄元素の K-吸収端に近い波長のX線 を使ってフェリチンの散乱測定を行う と、鉄の原子散乱因子は通常の散乱因 子、 f_0 、と異常分散に起因する散乱因子、 $f_a(\lambda)$ 、 $f_a(\lambda)$ 、の和、 $f(\lambda) = f_0 + f_a(\lambda) + i f_a(\lambda)$ 、 となり、このときの散乱強度は

 $I(S,\lambda) = I_0(S) + f'(\lambda)I_{0a}(S)$

 $+(f(\lambda)^{2}+f'(\lambda)^{2})I_{a}(S)$ (2)

で表される。 ここで、第 1 項は吸収 端遠方の波長での散乱強度、第 3 項は 鉄原子の分布構造に由来する強度、第 2 項は $f_0 \ge f_a$ のクロスタームである。 直 接に鉄コアの構造のみを抽出する点で は第三項を求めるのが望ましいが、第 1 項と比較してその寄与が小さいので実 験的には難しい。 第二項は寄与が比 較的大きいので $I_{0a}(S)$ を求めることは可 能である。 鉄元素を約 1300 個含むネ

図3.フェリチンの強度曲線のデコンポジ ションとアポフェリチンの強度曲線。

イティブフェリチンの分離された各強 度曲線を図3に示す。 また、鉄元素 を1300 個と760 個取り込ませた再構成 フェリチンの $I_{0a}(S)$ から鉄コアの R_{Fe} を 算出すると、夫々に23.0A と25.7A で コントラストバリエーション実験の結 果とほぼ一致している。

この結果は両手法が共に定量性を持 って適用できたことを示すものと言え るが、これは多分にフェリチン特有の 構造によるものとも言える。 この点、 異なった試料での実験が必要となろう。