PF研究会/2008.09.18 多機能タンパク質の機能発現の 機構解明における小角散乱の役割

Role of small-angle scattering in unraveling the recognition mechanism by a multifunctional protein

山形大院理工, Yamagata Univ., Human SAFE 和泉 義信, Yoshinobu Izumi yizumi@yz.yamagata-u.ac.jp

Calmodulin (CaM)

免疫細胞の生理機能 細胞の活性化からアポートーシス シグナル伝達経路

HIV-gp41:

Solution structure of Ca²⁺/calmodulin complexed with a lentivirus lytic peptide 1 reveals a novel mode of molecular recognition, Y.Izumi, A.Amano, T.Saito, Y.Jinbo: *J.Appl. Cryst.* (2007) **40**, S179-S183.

Peptide name	Primary sequence	
	1 5 8 14	
MLCK22	KKRWKKNFIAVSAANRFKKISS Canonical TP/	α -helix
1W,5F,8V,14F:a	nchoring residues, if // at 7, no globular structure	<u>}</u>
LLP1:	1 14	
HV1A2∆10	DRV <u>I</u> EVVQG <i>A</i> YRAILH <u>I</u> HRR	
HV1B1∆10	DRV <u>I</u> EVVQG <i>A</i> YRAIRHIPRR	
HV1H2∆10	DRV <u>I</u> EVVQG <i>A</i> CRAIRHIPRR	
HV1H2W∆10	DRV <u>I</u> EVVQG <i>W</i> CRAIRHIPRR	
HV1rA2∆10	RRH <u>I</u> HLI <u>A</u> RY <u>A</u> RQAVE <u>I</u> VRD	
	1 5 8 14	
bbreviations for the amin	o acids residues are: A, Ala: C, Cys; D, Asp; E, Glu; F, Phe; G,	Gly; H, H

I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, GIn; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y,Tyr.

$\frac{\text{Guinier Region}}{l(s,c) = l(0,c)exp\{-4\pi^2 R_{g}^2 s^2/3 \ll 1\}}$

In the dilute limit,

Kc/I(0,*c*) = 1/*M* + 2*A*₂*c* + … , *R*_g(*c*)² = *R*₀² - *B*_{if}*c* + … 分子量(*M*), 回転半径(*R*₀), 相互作用パラメータ(*A*₂, *B*_{if}) <u>Kratky Region</u>

Kratky plot (KP: Shape); P(*r*), *d*_{max} *I*(*s*)/*I*(0) instead of *I*(*s*)

<u>KP</u>

- a) CaM (red); CaM/MLCK22 (black); CaM/HV1A∆3 (blue); CaM/HV1A2∆10 (green); CaM/HV1rA∆10 (magenta)
- b) CaM (red); CaM/MLCK22 (black); CaM/HV1B1∆10 (blue)
- CaM (red); CaM/MLCK22 (black);
 CaM/HV1H2∆10 (blue);
 CaM/HV1H2W∆10 (green)

Ca²⁺/CaM adopts a dumbbell-shaped structure, while the Ca²⁺/CaM/MLCK22 complex adopts a compact globular shape. The data points for the three types of LLP complexes are almost superimposed on those for the Ca²⁺/CaM/MLCK22 complex, indicating that these complexes adopt almost the same globular structure as that of the Ca²⁺/CaM/MLCK22 complex, suggesting each peptide adopts an α -helical conformation in the complex.

Globular \implies TP: α -helix \implies Anchoring Residues \implies Motif

HIV-MA(p17)

Solution X-ray scattering Reveals a Novel Structure of Calmodulin Complexed with a Binding Domain Peptide from the HIV-1 Matrix Protein p17: Y.Izumi, H.Watanabe, N.Watanabe, A.Aoyama, Y.Jinbo, and N.Hayashi, *Biochemistry* 2008, **47**, 7158-7166.

<u>TP</u>

Peptide name	Primary sequence
p1 7N	GELDRWEK I RLRPGGKKK
p17C	KKKYKLKHI VWASRELERFAVN
p17T	GELDRWEK I RLRPGGKKKYKLKH I VWASRELERFAVN

<u>解析 2: Tertiary structural prediction</u>

Sequential morphs:

Ca²⁺/CaM/RS20 (ff0, 1cdl), Ca²⁺/CaM (ff17, 1cll) (ff11, ff13, and ff15)

Target docking: Ca²⁺/CaM/M13 (2bbn)

p17 protein (1tam)

Discover 3 module of Insight II 2000 (Accerlys):energy min. & MD

<u>解析 3 : Calculation of SAXS profile of known tertiary</u> <u>structures</u>

Extension of the Debye's formula

Cube size=0.5Å, r_{H2O} =1.4Å

l(*s*)/*l*(0) instead of *l*(*s*):

No adjustable parameter

SAXS profile & KP of Ca²⁺/CaM/p17T

A reasonable fitting of data points except the deviation beyond s>0.043 Å⁻¹.

Such a deviation was also observed for both Ca²⁺/CaM and Ca²⁺/CaM/*sk*MLCK22 complex.

No instrumental bias!

No adjustable parameter!

(*Biochemistry* 2008, <u>47</u>, 7158-7166)

Flexibility of central linker green:1cll, blue: 1cdl, magenta: ff15

(Biochemistry 2008, <u>47</u>, 7158-7166)

Model for the complex of Ca²⁺/CaM/p17T yellow: Ca²⁺/CaM green: p17T

Ca²⁺/CaM/HIV_LLP1

- <u>CaMはLLP1と結合し,球状構造をとる。LLP1の極性はM13, RS20複合体と逆になる:</u>
- (1)3種の異なるHIV-1のCaM結合部位がCaMと球状の複合体を形成する,
- (2) 極性を反転させたLLP1を用いても球状構造をとる,
- (3) アンカー残基と隣接する7位の残基が嵩高い場合でも球状構造をとる。 CaMの結合により、gp41の3量体形成が阻害される。

Ca²⁺/CaM/HIV_p17T

CaMの各ロブの構造は複合体形成により変化しない。複合体の全体構造は伸びた 構造をとり,回転半径は20.5Åで,ドメイン間距離は34.2Åである。

CaM/p17T複合体の構造は、主として静電的相互作用により安定化されている。

CaMの疎水性パッチは、p17のN末のミリスチル基を隔離する役割を担う。

CaMは、HIV-1に対して、抑制因子として作用している! 小角散乱は蛋白質分子の機能解析に有用である!