PF研究会「軟X線分光, 散乱測定を用いた物性研究の現状と展望」 2011年9月13,14日

軟X線磁気円二色性による磁性ナノ構造の研究

藤森 淳(東大理学系)

門野利治, V. R. Singh, V. K. Verma, 石上啓介, 芝田吾朗, 原野貴幸 (東大理) PF BL-16A2: 小出常晴, 朝倉大輔, 雨宮健太, 酒巻真粧子(物構研PF) SPring8 BL23-SU: 竹田幸治, 岡根哲夫, 斎藤祐児(原子力機構) TLS BL-11A1: F. H. Chang, H.-J. Lin, D.-J. Huang, C. T. Chen (NSRRC, Taiwan) SrRuO₃, La_{1-x}Sr_xMnO₃: 組頭広志(物構研PF), 吉松公平, 尾嶋正治(東大工) 多重項計算, クラスター計算: 田中 新(広大先端物質)

概要 • 測定原理, 特徴 • これまでの研究例 -希薄磁性半導体 -酸化物薄膜 • 今後の展望

X-ray magnetic circular dichroism (XMCD) in core-level x-ray absorption spectroscopy (XAS)

Ferromagnetic and paramagnetic components in magnetization and XMCD signals

SQUID data of thin film sample

M-H curve

Surface- and bulk-sensitive detection modes of XAS and XMCD measurements

A. J. Achkar, PRB '11

Metal-to-insulator transition in SrVO₃ with decreasing film thickness

Metal-to-insulator transition in SrRuO₃ with decreasing film thickness

Concomitant ferromagnetic-toparamagnetic transition in SrRuO₃ thin films

Temperature (K)

M. Takizawa et al.

Ru $3p \rightarrow 3d$ XMCD of SrRuO₃ thin films near critical thickness

K. Ishigami et al.

LDA+U calculation of SrRuO₃ thin films

Metal-to-insulator transition in La_{1-x}Sr_xMnO₃ with decreasing film thickness

Mn $2p \rightarrow 3d$ XAS and XMCD of La_{1-x}Sr_xMnO₃ thin films

X-ray absorption spectroscopy (XAS) spectra

X-ray magnetic circular dichroism (XMCD) spectra

No change in Mn³⁺/Mn⁴⁺ ratio

G. Shibata et al.

Mn $2p \rightarrow 3d$ XMCD of La_{1-x}Sr_xMnO₃ thin films

スピンホール系におけるスピン軌道相互作用

T Seki et al, Nat. mater. '08

ベクトル型マグネットと高速偏光スイッチング を用いたXMCD

方向可変磁場を用いたXMCD

La_{1-x}Sr_xMnO₃薄膜の磁気異方性

K. Yoshimatsu et al., APL '09

G. Shibata et al.

Ga_{1-x}Mn_xAs(薄膜試料)の磁気異方性

XMCDの角度依存性測定によるスピン・モーメント およびスピン分布四重極モーメントの決定

 $\rightarrow m_{\text{spin}}, m_{\text{orb}}^{\theta}, m_T^{\theta}$ の完全決定($\theta = \perp, //$)

小出常晴:「新しい放射光の科学」 菅野,藤森,吉田編(講談社2000年)

軟X線非相反方向二色性(XNDD)の測定

まとめ

- 研究対象
 - 希薄磁性半導体
 - ・ 磁性薄膜: 厚さ依存,界面,表面,基板圧力,電場,...
 - ・ 磁性ナノ構造: 細線,ナノワイヤー,ナノ粒子...
 - ・ マルチフェロイック系, スピンホール系
- ・ 今後の発展
 - 磁場方向依存 → 磁気異方性(希土類磁石?)
 - 偏光依存
 - 強磁場
 - 時間分解
- ・ 他の手法との組み合わせ
 - 共鳴軟X散乱
 - . . .