## 分解能10000の軟X線発光分光

## 東大院工 原田慈久



## **SPring-8 BL07LSU HORNET station**

2009.10 コミッショニング 2010.7 分解能E/∆E>5000 2010.12 分解能E/∆E>10000 (N 1s) 2011.1~ ユーザー実験(G課題)開始

# ACKNOWLEDGMENTS

## Applied Chemistry, University of Tokyo M. Kobayashi, H. Niwa, M. Saito, Y. Hiraike, H. Kiuchi and M. Oshima

## Japan Synchrotron Radiation Research Institute (JASRI) Y. Senba, H. Ohashi, H. Kishimoto and T. Miura

#### **RIKEN/SPring-8**

## T. Tokushima, Y. Horikawa and S. Shin

#### Budget NEDO & CREST



## 元素選択性と軟X線・硬X線



## 発光分光の高分解能化



## **Ultra-high resolution SXES spectrometer**

G. Ghiringhelli et al., Rev. Sci. Instrum. 77, 113108 (2006).





*Energy resolution* Standard:  $E/\Delta E < 2000$ SAXES:  $E/\Delta E > 10,000$ 

#### Ultra-high resolution $\rightarrow$ Vibration (~0.1eV)



## Ultra-high resolution ⊗ Q-dependence → spinon & orbital excitations (~0.1eV)



#### Ti 2p RXES of TiOCI



S. Glawion et al., Phys. Rev. Lett. 107, 107402 (2011).

## **Concept of SPring-8 BL07LSU SXES station**

## Ultrahigh energy resolution with *in situ* (air pressure) experiments

## **Commissioning & operation schedule**

2009 2010 2011 2012

BL07LSU construction Ultrahigh resolution experiments

In situ experiments

'09.10 BL07LSU SXES station commissioning commissioning

User operation since 2011.1



#### HORNET XES station Focused image @ sample position



## Ultra high resolution soft X-ray emission (HORNET) @ SPring-8 BL07LSU



## Simulated energy resolution

#### $\rightarrow$ applying coma-free mode

V.N. Strocov et al., J. Synchrotron Rad. 18, 134 (2011).



## **Bent correction of CCD images**





20%~40% improvements in energy resolution



## Precise alignment of the sample position





# Vibrational progression of Ionic liquids



By Asoc.Prof. K. Kanai and Y. Ouchi



#### 溶液・大気圧下試料の軟X線発光













## True air pressure experiment



*In situ* cell which separates vacuum condition and ambient gas condition was fabricated.

Ultimate pressure (Vacuum side): 3x10<sup>-6</sup> Pa

## True air pressure experiment



前置ミラーの導入



T. Tokushima et al., Rev. Sci. Instrum. 82, 073108 (2011).

## 研究プロジェクト(2010~)

- 1. 燃料電池触媒のin situ状態分析
- 2. タンパク質のin situ状態分析
- 3. 拡張ナノ水、溶液解析

S 型 課 題

4. コンビナトリアル薄膜の軟X線発光分光



- 「1. 燃料電池触媒の*in situ*状態分析(S型:丹羽、NEDO)
- 2. タンパク質のin situ状態分析(S型:小林、G型:東邦大大胡先生)
- 3. 拡張ナノ水、溶液解析(S型:丹羽、東大応化)
- 4. 水素吸蔵合金の水素吸蔵機構(G型:筑波大関場先生)
- 5. イオン液体の振動分光(G型:東京理科大金井先生)
- 6. Orbiton励起の観測(S型:小林、KEK、JAEA)
- 7. 光触媒の界面電子状態(G型:東大物性研吉信先生)
- 8. リチウムイオン電池のin situ状態分析(G型: 産総研朝倉先生)

#### まとめ

東大ビームラインBLO7LSU最下流部に超高分解能軟X線発光分光装置 を建設。分解能E/∆E ~10000を550 eV以下のエネルギー範囲で達成した。 (750 eV以下ではE/∆E >8000)

■本ステーション開発のポイント

- 1. 究極の縮小光学配置による後置(KB)ミラーで試料上で1µm程度の集光を実現した。
- 2. 検出器の位置分解能に制約されず、かつ明るさを犠牲にしないギリギリの分光器の 大きさを追求した。
- 3. 従来の分光器調整駆動機構に、高次の収差(コマ収差など)を補正できる駆動軸を 追加した。
- 4. 溶液試料の測定も同じチェンバーで簡便に行えるシステムを組み込んだ。

■G課題による一般課題の受付を開始(~2011A期) 超高分解能を活かせる実験課題、他の手法ではわからない大気圧環境下の電子 状態(溶液を含む)、組み合わせ実験の申請をお待ちしています。

2012A期の実験課題申請:H24.1.10頃 <u>http://www.issp.u-tokyo.ac.jp/labs/sor/</u> ←ブックマーク!