PF研究会「軟X線分光・散乱測定を用いた物性研究の現状と展望」

スピントロニクス材料の軟X線 内殻吸収磁気円二色性 ^{木村 昭夫} 広島大学大学院理学研究科

KEK研究本館小林ホール 2011年9月13日(火)

共同研究者

PMA in Pd/Co(1ML)/Pd(001)

◆ 広島大学大学院理学研究科

上野哲朗(Pd/Fe/Pd)、田頭徹朗(Pd/Co/Pd)、 古本一仁(Gr/Fe)、柳楽未来、矢治光一郎(現ISSP)

◆ 広島大学放射光科学研究センター
 澤田正博、島田賢也、生天目博文

Fe 3d moments in Fe₄N film, Magnetic impurity on 3D topological ins. -- Co/Bi₂Se₃ --

- ◆ 筑波大学 伊藤啓太、原田一範、末益崇
- ◆ 産総研 秋永広幸
- ◆ 日本原子力研究機構(JAEA) 竹田幸治、斎藤祐児
- ◆ 広島大学大学院理学研究科

叶茂(Co/Bi_2Se_3)、黒田健太、岡本和晃、谷口雅樹

内殻吸収磁気円二色性(XMCD)分光

circ. pol. light

円偏光スイッチングの利点

- ・測定精度の向上
- ・微小磁気モーメント(微小磁性体,非磁性元素)
- マクロな磁化が無い磁性体への適用

 $\mathbf{M} \uparrow \mathbf{P} \uparrow \equiv \mu_{+}$ $\mathbf{M} \downarrow \mathbf{P} \uparrow \equiv \mu_{-}$

HiSOR BL14: Science for Nanomagnetism

XAS & XMCD spectra of Co/Pd and Pd/Co/Pd

HISOR

Hysteresis curves at Co L₃ edge

M. Sawada et al., J. Elec. Spectrosc. Relat. Phenom 184 (2011) 280.

BL-14

HISOR

PMA is stable at RT for Pd/Co/Pd(001)

γ '-Fe₄N as a promising highly spin pol. material

- Cubic perovskite (a=0.3795nm) Small mismatch with Si (1.3%)
- Ferromagnetic below *T*c=767K Large negative spin polarized conductance is predicted and PCAR shows a finite spin pol.

S. Kokado *et al.*, Phys. Rev. B **73** (2006) 172410.

A. Narahara et al., Appl. Phys. Lett. 94 (2009) 202502.

M_{S} v.s. lattice mismatch for γ '-Fe₄N (VSM)

S. Atiq et al., Appl. Phys. Lett. 92 (2008) 222507.

M_S increases as the lattice mismatch is smaller.

MBE grown high-quality Fe₄N film

伊藤啓太、末益崇(筑波大)

 $Fe_4N(10nm) / LaAlO_3(001) [0\% mismatch]$ $Fe_4N(10nm) / MgO(001) [11\% mismatch]$

Both are capped with 3nm thick Au film

XAS and **XMCD** spectra of γ '-Fe₄N

K. Ito et al., Appl. Phys. Lett. 98 (2011)102507.

Sum rule analysis of Fe 3d moments of γ '-Fe₄N

K. Ito et al., Appl. Phys. Lett. 98 (2011)102507.

Fe₄N(10nm) / LaAlO₃(001) $m_{spin} = 2.34 \mu_B \quad m^z_{orb} = 0.10 \mu_B$

Fe₄N(10nm) / MgO(001)
$$m_{spin} = 2.35 \mu_B \quad m^z_{orb} = 0.12 \mu_B$$

Fe 3d hole number: n_h =3.88 cf. Y. Takagi et al., PRB **81** (2010) 035422.

	Magnetic moment $(\mu_{\rm B} \text{ per Fe atom})$			
Compounds	m _{orb}	$m_{ m spin}$	m _{total}	
γ' -Fe ₄ N/LAO	0.102 ± 0.003	2.34 ± 0.06	2.44 ± 0.06	E. Blanca et al., PBE+U cal.
γ' -Fe ₄ N/MgO	0.121 ± 0.003	2.35 ± 0.06	2.47 ± 0.06	
γ' -Fe ₄ N	0.068	2.52	2.59	
ε-Fe ₃ N	0.040	1.97	2.01	
α -Fe	0.086	1.98	2.07	
α-Fe	0.046	2.16	2.21	

Experimental Fe 3d moment is consistent with PBE+U. M_S values are similar between LAO and MgO substrates.

Summary

Pd/Co(1ML)/Pd(001)

- Perpendicular magnetic anisotropy at RT.
- Large orbital moment perpendicular to plane.
 - ••• M. Sawada et al., J. Elec. Spectrosc. Relat. Phenom 184 (2011) 280.

γ'-Fe₄N film

- Determination of precise values of Fe 3d moments.
- Tiny dependence on substrates (LaAlO₃, MgO).
 - ••• K. Ito et al., Appl. Phys. Lett. 98 (2011)102507..

Magnetic impurities on 3D TI Co/Bi₂Se₃

- No long-range ferromagnetic order.
 - No energy gap opening at Dirac point
 - \Rightarrow QPI due to a strong warping of iso-energy contours

M. Ye et al.