PF研究会「軟×線分光・散乱測定を用いた物性研究の現状と展望」 2011年9月13日

高磁場下の混合原子価 希土類化合物のXASと XMCDの理論

KEK-PF, RIKEN/Spring-8 小谷章雄

Experiments

Hard X-ray XMCD experiments (L edge) of YblnCu₄, YbAgCu₄ and EuNi₂(Si_{0.18}Ge_{0.82})₂ in pulsed high magnetic fields by Y. H. Matsuda et al.
New soft X-ray XMCD experiments (M edge) of EuNi₂(Si_{0.18}Ge_{0.82})₂ in pulsed high magnetic fields by T. Nakamura et al.

Theory

A. Kotani : J. Phys. Soc. Jpn. 77, 013706 (2008)
A. Kotani: Phys. Rev. B. 78, 195115 (2008).
A. Kotani : Eur. Phys. J. Special Topics 169, 191 (2009).
A. Kotani et al.: J. Phys.: Conf. Series 190, 012013 (2009).
A. Kotani: Eur. Phys. J. B 72, 375 (2009).
A. Kotani: J. Electron Spectrosc. Relat. Phenom. 181, 168 (2010).
A. Kotani: Eur. Phys. J. B 81, 49 (2011)
A. Kotani: unpublished (2011).

Field-induced valence transition in EuNi2(Si0.18Ge0.82)2

Valence:

al.: JPSJ

77 (2008)

054713.

OT, 197 K

Eu³

6.970 6.980 6.990 7.000

Energy (keV)

4.3 K

1.0

Normalized Absorption

 Eu^{2+} : J = 7/2 Eu^{3+} : **J** = 0 Magnetization: Wada et al.: J. Phys.: **Condens.** Matters 9 (1997) 7913.

 $M = 5.7 \mu_{\rm B} / Eu$ (at 40 T)

XMCD at Eu L₂₃ edges of EuNi₂(Si_{0.18}Ge_{0.82})₂

Experiments: Matsuda et al.: PRL 103 (2009) 046402.

Calculation by mixed-valence model (with no magnetization for Eu³⁺)

2つの立場:

(1)磁化の不足分はEu³⁺の4f電子による。Eu³⁺のXMCDも同じ起
 源から生じる。 → Oko et al.: JPSJ 79 (2010) 024713.

Van Vleck 常磁性?

(2)磁化の不足分の起源はEu³⁺の4f電子とは無関係。Eu³⁺の
 XMCDの起源はEu³⁺の5d電子の磁気分極。
 → 軟X線XAS-MCDへの期待

Theory with an extended SIAM (Single-Impurity Anderson Model)

Calculated valence and magnetization

課題: Eu M₄₅端XMCD実験の解析により、この結果を検証する

Eu M₄₅ XAS and XMCD experiments (preliminary)

高輝度乜,東北大金研^A,九大理^B,奈良高専^C,東大物性研^D 中村哲也,鳴海康雄^A,林美咲^A,光田暁弘^B,広野等子,児玉謙司^C,森岡貴之^A, 齋藤康太^A,田添昂^A,木下豊彦,和田裕文^B,金道浩一^D,野尻浩之^A,

Examples of analysis

XAS

Spin and orbital sum rules

Magnetic moment for Eu²⁺ (per site):

$$M(\text{Eu}^{2+}) = -2\langle S_z \rangle = 35 \int_{M_b} (\mu_+ - \mu_-) d\omega / \int_{M_4 + M_b} (\mu_+ + \mu_-) d\omega,$$

Magnetic moment for Eu³⁺ (per site):

$$M(\text{Eu}^{3+}) = \langle (-2J_z + L_z) \rangle = \langle L_z \rangle$$

= $-16 \int_{M_4 + M_b} (\mu_+ - \mu_-) d\omega / \int_{M_4 + M_b} (\mu_+ + \mu_-) d\omega$.

Analyzed results (Comparison with theory)

まとめ

- EuNi₂(Si_{0.18}Ge_{0.82})₂の磁場誘起価数転移における従来の矛 盾点を解消するため、一次転移を考慮した不純物アンダー ソン模型による理論計算を提案した。
- 計算された価数と磁化の磁場依存性を検証するため、パル ス強磁場による軟X線XASおよびXMCDの実験データの解 析をおこなった。
 - 計算結果と実験の解析結果はかなりよい一致を示した。 実験は現在も進行中で、今後、より完全で信頼性の高い結 果が期待される。
 - 以上の結果は、従来の硬X線によるEuL₂₃端XASおよび XMCDデータを再解釈する上で、重要な情報となると考えられる。
 - 実験データを提供して下さった中村哲也氏らに感謝します。