PF研究会 2011年9月14日

強相関電子系の軌道状態とX線分光

溝川貴司 東京大学大学院新領域創成科学研究科

共同研究者: 東京大学新領域 須田山貴亮、脇坂祐輝、石毛悠太 東京大学工学系 和達大樹 Canadian Light Source Tom Regier University of British Columbia George Sawatzky 東京大学物性研究所 磯部正彦、上田寛 京都大学化学研究所 島川祐一 東京工業大学応セラ研 岡研吾、東正樹

強相関遷移金属化合物

多彩な物性を示す

電気特性 金属 ReO₃ 半導体 TiO₂ 絶縁体 SrTiO₃ (1)超伝導 La_{2-x}Sr_xCuO₄, LaFeAsO_{1-x}F_x 金属絶縁体転移 VO₂, V₂O₃, NiS, CuIr₂S₄ 強磁性体 CrO₂, SrRuO₃, YTiO₃ 磁性 (2)反強磁性体 FeO, CoO, NiO, La₂CuO₄ 巨大磁気抵抗 Pr_{1-x}Ca_xMnO₃ 誘電性 強誘電体 BaTiO₃ 常誘電体 SrTiO₃ (3)マルチフェロイクス

④ 熱電特性 Na_xCoO₂

強相関遷移金属酸化物の軟X線吸収分光(1990年代)

Photon Factory BL-2B 10m斜入射分光器 遷移金属 2p, 酸素1s 吸収端

T. Mizokawa, A. Fujimori, T. Arima, Y. Tokura, N. Mori, and J. Akimitsu: Electronic Structure of PrNiO₃ Studied by Photoemission and X-Ray Absorption Spectroscopy: Band Gap and Orbital Ordering, Phys. Rev. B **52** (1995) 13865--13873. Times Cited: 55

金属絶縁体転移 軌道秩序

軌道狀態

スピン転移

T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano: Electronic Structure and Temperature-Induced Magnetism in LaCoO₃, Phys. Rev. B **55** (1997) 4257--4266. Times Cited: 176

J. Matsuno, T. Mizokawa, A. Fujimori, D. A. Zatsepin, V. R. Galakhov, E. Z. Kurmaev, Y. Kato, and S. Nagata: Photoemission study of metal-insulator transition in CuIr₂S₄, Phys. Rev. B **56** (1997) R15979--R15982. Times Cited: 72 軌道誘起パイエルス転移

T. Saitoh, T. Mizokawa, A. Fujimori, M. Abbate, Y. Takeda, and M. Takano: Electronic Structure and Magnetic States in $La_{1-x}Sr_xCoO_3$ Studied by Photoemission and X-Ray Absorption Spectroscopy, Phys. Rev. B **56** (1997) 1290--1295. Times Cited: 96

 T. Tsujioka, T. Mizokawa, J. Okamoto, A. Fujimori, M. Nohara, H. Takagi, K. Yamaura, and M. Takano: Hubbard splitting and electron correlation in the ferromagnetic metal CrO₂, Phys. Rev. B 56 (1997) R15509--R15512. Times Cited: 51

Co 2p XPS of BiCoO₃

Co 2p XAS of BiCoO₃

UHF calculation for BiCoO₃

	Total energy per Co (meV)	Magnetic moment (μ_B)	Gap size (eV)
C-type	0	3.32	3.31
G-type	0.967	3.32	3.30
A-type	91.4	3.37	2.47
FM	177	3.37	2.24
Low spin	2290	0	1.71

C-type antiferromagnetic structure is stable.

Calculation for magnetic moment (C-type) : $3.32 \mu_B$ Experiment : $3.24 \mu_B$

Co-O-O-Co superexchange pathway in BiCoO₃

 $(pp\sigma) = (pp\pi) = 0$ (*pp* σ) and (*pp* π); Transfer integrals between O 2*p* and O 2*p*

	Total energy (per Co) (meV)	Magnetic moment (μ_B)	Gap size (eV)
C-type	0	3.36	3.65
G-type	-0.475	3.36	3.74

With $(pp\sigma) = (pp\pi) = 0$, G-type structure becomes stable.

C-type structure is stabilized due to $(pp\sigma)$ and $(pp\pi)$.

The path of Co – O – O – Co is important.

Small (or negative) Δ transition-metal compounds

Perovskite-based materialscorner sharing structureCsAuBr3charge disproportionation $Au^+ + Au^{3+} \rightarrow 2Au^{2+}$ J.-Y. Son *et al.*, Phys. Rev. B 72 (2005) 235105. $d^{10} + d^{10}\underline{L}^2 \rightarrow 2d^{10}\underline{L}$

YCu₃Co₄O₁₂ valence transition $Cu^{3+} + Co^{3+} \rightarrow Cu^{2+} + Co^{4+}$ $d^9\underline{L} + d^5 \rightarrow d^9 + d^5\underline{L}$

T. Mizokawa *et al.*, Phys. Rev. B **80** (2009) 125105.

BiCoO₃ Co-O-O-Co superexchange pathways

Triangular lattice materialsedge sharing structureNiGa2S4Ni2+ d^9L Ni-S-S-Ni superexchangeCT excitonic instability \rightarrow spin current order?K. Takubo et al., Phys. Rev. Lett.99 (2007) 037203; 104 (2010) 226404IrTe2orbitally induced Fermi surface change
cxcitonic instability \rightarrow orbitally induced Fermi surface change

Ta2NiSe5excitonic instability $Ni^{0+} + 2Ta^{5+} \rightarrow Ni^{2+} + 2Ta^{4+}$ BEC type! $d^{10} + 2d^0 \rightarrow d^{10}L^2 + 2d^1$ Y. Wakisaka *et al.*, Phys. Rev. Lett. **103** (2009) 026402

O1s and V2p XPS spectra of K₂V_{8-y}Ti_yO₁₆

V2p XAS spectra of K₂V_{8-v}Ti_vO₁₆

Intensity (arb. units)

Charge and orbital model for K₂V₈O₁₆

今後の展望

Fe系超伝導体、Aサイト秩序型ペロブスカイト、…

<u>遷移金属酸化物薄膜、ヘテロ界面</u>内殻光電子分光による LaTiO₃/SrTiO₃, SrVO₃/SrTiO₃, … 界面の原子価制御

<u>外場誘起相転移、相制御</u>元素選択的ポンププローブ分光 (Pr,Ca,Sr)MnO₃, Ca₂RuO₄, (Ti,Co)O₂, LaCoO₃, ...

<u>トポロジカルな励起の秩序化</u> MnSi, Dy₂Ti₂O₇, ...

軟X線散乱、顕微分光