

Soft x-ray spectroscopies on strongly correlated Co oxides

Tom Saitoh Department of Applied Physics Tokyo University of Science

PF workshop "Current status and progress of condensed matter research by soft x ray spectroscopic and scattering measurements" (2011.09.13-14, presented on 14th)

Collaboration

Thank you all!

Group members including ex-grad students: <u>Mario Okawa</u> <u>Atsushi Hasegawa</u>, Atsunori Hachimura, Junichi Nishimura

Crystal growing/structural, transport, magnetic measurements: Yoshihiko Kobayashi (*Tokyo Medical University*) Kichizo Asai (*University of Electro-communications*)

XAS/photoemission experiments
 Takashi Mizokawa, Hiroki Wadati (University of Tokyo)
 Kou Takubo (Waseda University)
 Tom Regier (Canadian Light Source)

Kenya Shimada, Masashi Nakatake (*HiSOR, Hiroshima Univ.*) Shigenori Ueda, Yoshiyuki Yamashita, Hideki Yoshikawa, Keisuke Kobayashi (*SPring-8/NIMS*) Eiji Ikenaga (SPring-8/JASRI)

Band structure calculations

Noriaki Hamada (Tokyo University of Science)

Spin crossover in LaCoO₃

 χ of LaCoO_3

Possible lowest magnetic states in LaCoO₃

Simple ${}^{1}A_{1}-{}^{5}T_{2}$ model cannot reproduce χ , while ${}^{1}A_{1}-{}^{3}T_{1}-{}^{5}T_{2}$ 3-state model describes χ well in a wide temperature regime.

Why electronic-structure study?

Experiment: Photoemission (Occupied states) Soft x-ray absorption (Unoccupied states, multiplet structure) Theory: Band structure calc., cluster model calc.

LaCoO₃: O K edge x-ray absorption spectra

Small changes at low temperatures, which may be consistent with the LS-IS-HS model.

LaCoO₃: Co L edge x-ray absorption spectra

LS and HS calcs. without Spin-orbit interaction (SOI) compared with exp.

Abbate et al., PRB**47**, 16124 (1993).

LS-HS model with SOI compared with exp.

Haverkort et al., PRL**97**, 176405 (2006).

Effects by SOI seem to be small.

Motivations

Which model is appropriate to describe the spin crossover in LaCoO₃? LS-HS, LS-IS-HS, or others?

Three strategies

 (1) Temperature-dependent measurements to change the LS/IS/HS populations.
 LaCoO₃: T. Saitoh et al., PRB**55**, 4257 (1997) / many other studies

(2) Changing rare earths to change the LS/IS/HS populations at a fixed temperature.

LaCoO₃, PrCoO₃, NdCoO₃ : T. Saitoh et al., JMMM **310**, 981 (2007).

(3) Experimental determination of the LS, IS, and HS electronic structure by non-crossover compounds

Pr_{0.5}Ca_{0.5}CoO₃ : Spin/MIT simultaneous transitions

: T. Saitoh et al., JESRP **144-147**, 893 (2005).

Sr₂CoSbO₆ & related oxides: HS Co oxide with O_h symmetry

Experiment

Samples: Poly-crystals of Sr_2CoMO_6 (M=Sb, Nb, Ta), Ba_2CoMO_6 (M=Nb, Ta)

Light source: XAS: Canadian Light Source SGM beamline PES: HiSOR BL-1, BL-7 SPring-8 BL-15XU Lab XPS

XAS mode: TEY, TFY, PFY

Photoemission Analyzer: VG-Scienta SES series, JEOL-XPS system

 $h\nu$: From about 100 eV to 5 KeV

Surface treatment: Cleaved in situ

Seeking HS spectrum: Background

HS cannot be the ground state in RECoO₃. Besides, the HS population may not be large even at high temperatures.

High-temperature photoemission measurement is difficult due to its high surface sensitivity.

Observing the pure HS state in RECoO₃ is difficult.

The answer is Co double perovskite

(Ordered) Double perovskite type Co oxides have or may have the HS ground state.

Drawn with VESTA by Fujio Izumi at NIMS

$$A^{2+}_{2}$$
 Co³⁺ B'⁵⁺ O²⁻₆

Sb⁵⁺ ([Kr]4 d^{10}) B'= Nb⁵⁺ ([Kr]) Ta⁵⁺ ([Xe]4 f^{14})

Sr ₂ CoSbO ₆	Co ³⁺ HS	Order
Sr ₂ CoNbO ₆	Co ³⁺ HS ?	Disorder
Sr ₂ CoTaO ₆	Co ³⁺ IS ?	Disorder ?
Ba ₂ CoNbO ₆	Co ³⁺ HS ?,IS ?	Disorder
Ba ₂ CoTaO ₆	Co ³⁺ HS ?,IS ?	Disorder

V. Primo-Martin *et al.*, J. Solid State Chem. **157**, 76 (2001).
K. Yoshii, J. Solid State Chem. **151**, 294 (2000).
K. Yoshii, J. Alloys Compounds **307**, 119 (2000).
G. Blasse, J. Inorg. Nucl. Chem. **27**, 993 (1965).
HIIM, 日本物理学会秋季大会講演概要 **62**, 540 (2005).

G. Blasse, J. Appl. Phys. **36**, 879 (1965).
V. Primo-Martin *et al.*, J. Solid State Chem. **157**, 76 (2001).

Conclusions

First observation of Co $L_{2,3}$ and O K edge spectra from HS Co³⁺ oxides with O_h symmetry.

XAS and PES are powerful to probe the spin states of solids. Nevertheless, there is still controversy about which model is appropriate for the $LaCoO_3$ problem.

Spin crossover occurs.

= Energy levels are nearly degenerated.

= low-energy couplings may not be ignored. SOI

reconsideration on χ_0 (van-Vleck term)

SOI should be seriously considered in calcs. and exps.

Other mechanisms should also be examined.