KEK-SPF experiment hall

A high-intensity, pulsed slow positron beam is created by using a dedicated linac. A positron convertor and moderator assembly is at high tension up to 35 kV. And thus entire slow positron beam line is grounded.

Schematic view of the Beam lines

The Dedicated Linac with radiation shields off

The slow-positron-beam lines and experiment stations

A new positron convertor / moderator

25 μm thick W foil array Perpendicular to the e- incident direction Two sets of W foil (25 µm thick) lattices A cascade voltage supply to set voltages between the converter, the lattice 1, the lattice 2, and an extraction grid.

K. Wada et al.: Eur. J. Phys. D, 66: 37 (2012)

The parts with different colors are electrically isolated from each other. Bottom red: convertor Orange and green: moderators Blue: extraction grid Top red: wehnelt cylinder, same potential as the convertor

Annealing of W moderator with an electron-beam welder

The electron-beam welding machine used for annealing of the moderator

Power high enough to melt W foil (melting point 3400°C)

(SPF-A1) Photo detachment of Positronium negative ion (Ps⁻)

Positronium-negative-ion station built by the group of Prof. Nagashima The photo detachment of the Ps⁻ ion with a pulsed 25 Hz Nd:YAG laser Signals with and without laser irradiation of the 50 Hz slow-positron beam Doppler-shifted annihilation γ from the accelerated Ps⁻ detected by Ge ditectors

Revised chamber for detecting photo-detached Ps directly with an MCP array. The incident positron beam was magnetically bent by 45 degrees and led to the target. Ps⁻ were accelerated by an electrostatic field, and then irradiated by the laser. TOF of the Ps shows the acceleration before the photodetachment.

A new BL branch (SPF-A3) for Ps-beam detection

Vacuum degree: $\sim 2 \times 10^{-8}$ Pa

The beam-line branching unit

Ps-TOF station

Standardized beam-line branching unit for up to 35 keV positron beam

(SPF-B1) Reflection high-energy positron diffraction (RHEPD)

(SPF-B1) RHEPD station (without a brightness-enhancement unit)

RHEPD rocking curve

The brightness-enhancement unit (BER) for RHEPD

Schematics and pictures of the brightness-enhancement unit for RHEPD Consisting of a transmission remoderator with 100 nm W crystal, and electrodes. The W remoderator was annealed by the passage of electron current.

RHEPD pattern for the Si(111)-7x7 surface using the brightness-enhancement unit (BEU)

Before the BEU installation

After the BEU installation

6/7

5/7

4/7

3/7

The fractional spots have been observed with the brightness-enhanced beam

RHEPD rocking curve from Si(111)-7x7 surface

Renewed Ps time-of-flight (Ps-TOF) station

Renewed positronium time-of-flight (Ps-TOF) station Smaller plastic scintillators deliver a better time resolution TOF from the tungsten surface performed by Prof. Nagashima's group Enhancement of the Ps-emission efficiency observed for Na-coated sample

A client-server system to control magnetic-coil current remotely

About 100 current sources for about 200 magnet coils will become to be controlled by STARS system

Beam time and experiments in KEK-SPF

- 2010: beam time 181-days
 - Ps⁻ experiment (Y. Nagashima et al.)
 - RHEPD experiment (Y. Fukaya et al.)
- 2011: beam time 180-days
 - Ps⁻ experiment
 - RHEPD experiment
- 2012
 - Ps⁻ experiment
 - RHEPD experiment
 - Ps-TOF experiment 1 (T. Tachibana et al.)
 - Ps-TOF experiment 2 (Wada et al.)
 - Positron-impact-induced ion-desorption experiment (Hirayama et al.)

Any researcher can use our beam line

through approval of research proposals

 \Rightarrow Contact us to get further information

Outlook for next a few years

- Reflection high-energy positron diffraction (RHEPD)
 2012: RHEPD experiment with brightness-enhanced beam
- Low-energy positron diffraction (LEPD)
 - 2012: designing
 - 2013: installation
- DC beam experiment
 - 2013: installation of DC-beam section
 - 2014: Doppler and coincidence Doppler experiment

Staff and current users of KEK-SPF

- KEK-SPF staff
 - Slow-positron beam line
 - T. Hyodo, K. Wada (April 2010 —), and I. Mochizuki (October 2012 —)
 - Dedicated linac of SPF
 - T. Shidara, S. Ohsawa, M. Ikeda, and other members of KEK linac group
- Current users of KEK-SPF
 - Ps negative ion and Ps-TOF experiment
 - Y. Nagashima and his students (Tokyo University of Science)
 - T. Tachibana (Rikkyo University)
 - RHEPD experiment
 - A. Kawasuso, Y. Fukaya, M. Maekawa (Japan Atomic Energy Agency)
 - I. Mochizuki (KEK)
 - Positron impact induced ion-desorption experiment
 - T. Hirayama and T. Tachibana (Rikkyo University)
 - LEPD experiment
 - T. Takahashi and T. Shirasawa (The University of Tokyo)
 - M. Fujinami (Chiba University)