磁気ボトル型電子エネルギー分析による原子分子の多重電離の研究

彦坂泰正 (分子研)

共同研究者

伊藤健二、鈴木功(物構研) 繁政英治、金安達夫(分子研) P. Lablanquie、F. Penent(仏国CNRS) J.H.D. Eland(英国Oxford大)

磁気ボトル型電子エネルギー分析

全立体角にわたって捕獲 = 高い捕集効率 高い同時計測効率 飛行時間 ⇔ 運動エネルギー 長い飛行管 → 高分解能

シングルバンチ運転が必要

Ne²⁺ States Produced by Core-Valence DPI

Intensity ratio differing much from the statistical value of 1:3

共鳴二重オージェ終状態

Energy Distribution of Two Fast Electrons

Slowest electron for the formation of the three components of 3p⁻³

Distribution is more hollow, compared to U-shape

超高効率な多電子同時計測 磁気ボトル型分析器+チョッパー

内殻電子と価電子の二重イオン化 スピンが平行な衝突が有利

内殻励起状態の二重オージェ 原子内電子衝突の重要性

三重イオン化 Electron energy distribution for TPI