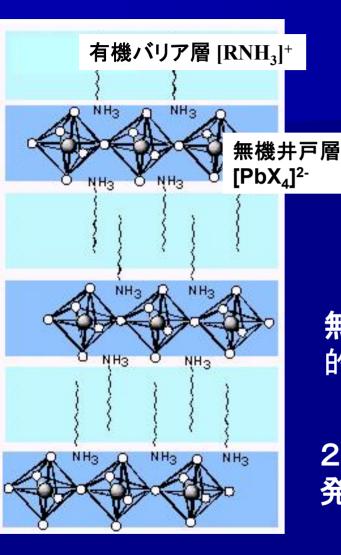

PF研究会 「PFリングのトップアップ・シングルバンチ運転 利用研究と今後の発展について」 2008年11月8日

核共鳴散乱測定のための高速シンチレータの開発

岸本俊二^{1,5}、澁谷憲悟^{2,5}、錦戸文彦^{2,5}、越水正典^{3,5}、 春木理恵⁴、依田芳卓^{4,5}

高工ネ研・PF1、放医研2、東北大3、JASRI4、JST/CREST5

1. 放射光核共鳴散乱法と高速パルス検出器


これまで シリコン・アバランシェフォトダイオード(Si-APD)

高エネルギー領域の 励起核レベルも利用

サブナノ秒発光寿命 のシンチレータ

2. サブナノ秒シンチレータ

候補として、**低次元半導体シンチレータ** 例.

有機無機ペロブスカイト型化合物結晶: (RNH₃)₂PbX₄, R:アルキル基, X:ハロゲン (Br,I)

無機層が量子井戸構造を形成: 励起子が熱的に安定化。 室温でも高効率発光。

2次元内に閉じ込められた励起子による高速 発光:

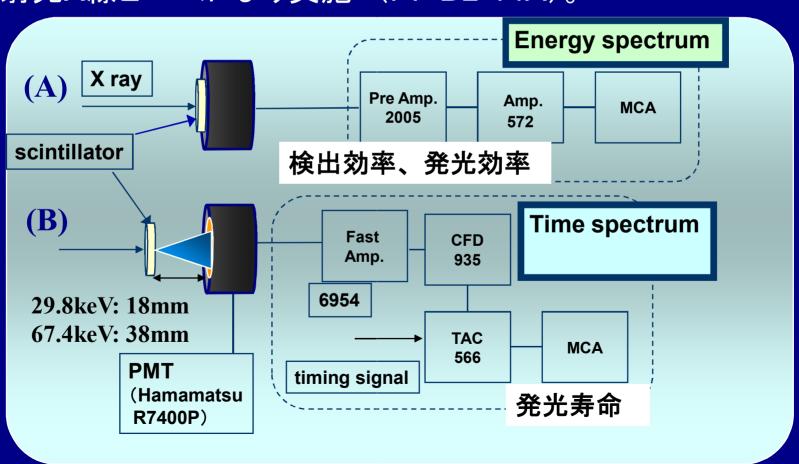
励起子の空間的局在化により無輻射遷移 (結晶欠陥などに捕獲されることによる)が抑制 される。

	Wavelength (nm)	Decay time (ns)	Light yield	Intrinsic efficiency (%)
NaI:Tl	410	230	100	50keV: 98% (1mm thick)
YAP:Ce (YAlO ₃)	370	27	40	50keV:81% (1mm thick)
(n-C ₆ H ₁₃ NH ₃) ₂ PbI ₄ 直鎖アルキルアミン	560	0.39(28%), 3.8(29%) 16(43%)	11	50keV: 20%? <u>~ 0.2mm thick</u>

*電子線による。K.Shibuya et al., Jpn. J. Appl. Phys., 43 (2004) L1333

$(C_6H_5-(CH_2)_2-NH_3)_2PbBr_4$:

Bis(phenethylammonium)tetrabromoplumbate,


略称:フェネチルアミン臭化鉛、PhE-PbBr4

厚さ max.1.7 mm (~9x6 mm)

3. シングルバンチ・モードを利用したシンチレータ 発光特性の評価

検出器配置(A) および**単一光子検出配置(B)** でエネルギーおよび時間スペクトル測定(シングルバンチモード) を放射光X線ビームにより実施 (PF BL-14A)。

4. Ni-61核共鳴散乱測定への応用

タイミング測定(時間分光):核共鳴成分の測定に成功!

'07 5月、11月 SPring-8 BL09XUでの実験 (ΔE~1eV)

Ni-61: 67.4keV, $T_{1/2}$: 5.3 ns (τ : 7.6 ns)

シンチレータ: ~8x7x0.9t mm, 57.2mg **→**

試料: Ni-61濃縮(95%) 金属箔、 5x5x0.38t mm 非弾性散乱配置 (AL3mmt の上に試料をセット)

シンチレータ特性の比較

	ε (%, 67.4keV, 1mm ^t)	発光効率 (文献値)	λ(nm), τ (ns)
PhE-	23.7±0.1	22±2 (-)	440, 10
PbBr ₄	(0.9mm ^t)		
NE142	2.6±0.1	10±1 (11)	425, 2
YAP(Ce)	50.2±0.2	(40)	370, 27

まとめ

- 1. フェネチルアミン臭化鉛 (PhE-PbBr₄)をシンチレータ として使用、Ni-61 (励起エネルギー: 67.4keV、T_{1/2}:5.3ns) の 核共鳴時間スペクトルの観測に成功した。
- PhE-PbBr₄について、発光寿命: 10 nsが主、発光強度: ~20 (NaI: 100の場合)の特性が確認できた。NE142と比較して発光寿命は長いが発光効率が大きい。また 67keVでは検出効率が9倍以上ある。
- 3. 核共鳴散乱実験への応用では、時間遅れ事象の効率のよい観測のため、より短い発光寿命が望まれる(寿命数ns以下なら即発線の影響がt < ~10 nsにとどまる)。
- 4. シングルバンチモード(>数100 ns間隔) は高速X線検出 器の開発に必要。短バンチ化(FWHM:<数10 ps) も魅力。