PF研究会「蛍光XAFS研究の現状と進展」

XAFS Analysis for Local Structure of Supported Catalysts -Comparison between Transmission and Fluorescence mode-

<u>T. HARA</u>, N. ICHIKUNI, and S. SHIMAZU Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University

Chiba University

Applied Chemistry and Biotechnology

11, March, 2009

Clay as an Catalyst Support

• Smectite-group Materials (Cation-Exchanger)

Montmorillonite	Na _x (Al _{2-x} Mg _x)(Si ₄ O ₁₀)(OH) ₂ · <i>z</i> H ₂ O
Beidellite	M _x Al ₂ (Al _x Si _{4-x} O ₁₀)(OH) ₂ ⋅ <i>z</i> H ₂ O
Hectrite	$(Na_2Ca)_{x/2}(Li_xMg_{3-x})(Si_4O_{10})(OH)_2 \cdot zH_2O$
Saponite	Ca _{x/2} Mg ₃ (Al _x Si _{4-x} O ₁₀) ⋅ <i>z</i> H ₂ O

Botallackite-group Materials (<u>Anion</u>-exchanger)

Layered Double Hydroxide: $[M_{1-x}^{H}M_{x}^{H}(OH)_{2}]^{x+}Y^{z-}_{x/z} \cdot nH_{2}O$

Hydrotalcite	Mg ₆ Al ₂ (OH) ₁₆ CO ₃ ·4H ₂ O
Pyroaurite	Mg ₆ Fe ₂ (OH) ₁₆ CO ₃ ·4H ₂ O
Takovite	Ni ₆ Al ₂ (OH) ₁₆ CO ₃ ·4H ₂ O
Meixnerite	$Mg_6Al_2(OH)_{16}(OH)_2 \cdot 4H_2O$

Layered Hydroxy Double Salt: $M_{1-x}^{\mu}M_{2x}^{\mu}(OH)_{2}Y_{2x/z}^{\mu}\cdot nH_{2}O$

Layered Ni-Zn Mixed Basic Salt (NiZn)

Schematic Structure

Ref) S. Yamanaka. Mat. Res. Soc. Proc. (1995)

Properties

(i) Anion exchange ability of AcO⁻ anion
 (ii) High anion exchange capacity

 (2.65 mmol/g_{NiZn})
 (iii)Anion exchangeable sites are
 isolated neighboring on Zn²⁺ cation
 (iV) Simple preparation
 (v) Controllable clearance space

Green Alcohol Oxidation

- the clean synthesis of high value chemical intermediates -

R₁, R₂ = H, alkyl, aryl

How green is this chemical transformation?

(I) Molecular Oxygen or Air as an Oxidant

Clean, safe, low cost, and only water as a by product

(II) Heterogeneous Catalysts

Reusability and simple work-up Utilization of multi-functions at solid surface

(III) Environmentally friendly

Reduce CO₂ emissions and preserve natural resources

Conventional Methods

Energy intensive and atom-uneconomical process Severe reaction conditions and any additives Stoichiometric and Hazardous Reagents KMnO₄, MnO₂, K₂Cr₂O₇, or CrO₃·2C₅H₅N, etc....

This Work

Creation of active Pd(II) species without any organic ligands stabilized by the unique features of anion-exchangeable clay materials

<u>Advantages</u>

(i) Stabilization of Pd(II) species with electrostatic interaction in the interlayer of clay without organic ligands
(ii) Reusability by the simple filtration or centrifugation
(iii) Weak basicity of the clay plays a key role toward successive alcohol oxidation

Preparation of Pd/NiZn Catalyst

^{*a*} Inverse Fourier transformations were performed for the regions of 1.16-1.96 Å of the Pd/NiZn. ^{*b*} Coordination number. ^{*c*} Bond distance. ^{*d*} σ² is Debye-Waller factors. ^{*e*} Data from X-ray crystallography.

Benzylalcohol Oxidation Under Various Conditions^a

ОН

Pd catalyst (Pd: 2 mol%)
solvent, O₂, 80 °C, 1 h

ſ Ň	ſ``0

entry	catalyst	solvent	conv. (%) ^b	yield (%) ^b
1	Pd/NiZn	PhCF ₃	99	97
2 ^c	Pd/NiZn	PhCF ₃	99	99
3 ^d	Pd/NiZn	ChCF ₃	trace	trace
4	Pd/NiZn	CICH ₂ CH ₂ CI	81	79
5	Pd/NiZn	<i>n</i> -heptane	79	71
6	Pd/NiZn	EtOAc	58	50
7	Pd/NiZn	MeCN	47	42
8	Pd/NiZn	DMF	trace	trace
9	Pd/NiZn	DMSO	trace	trace
10	Pd/NiZn	EtOH	trace	trace
11	Pd/NiZn	water	47	41
12	NiZn	PhCF ₃	ttrace	trace
13	none	PhCF ₃	No Reaction	
14 ^e	Pd/Hydrotalcite	PhCF ₃	>99	>99

^{*a*} Benzyl alcohol (0.5 mmol), Pd catalyst (Pd: 2 mol%), solvent (2.5 mL), 80 °C, O₂ atmosphere. ^{*b*} Determined by GC analysis using an internal standard technique. ^{*c*} The catalytic reaction was carried out under 1 atm of air instead of pure O₂. ^{*d*} N₂ atmosphere. ^{*e*} Hydrotalcite, Mg₆Al₂(OH)₁₆(CO₃), was purchased from Tomita Pharm.

Pd/NiZn

Pd/Hydrotalcite

Pd/Hydrotalcite catalyst was changed into black color.

Stable Pd^{II} Species in the NiZn Interlayer

Pd K-edge XANES

Curve-fitting Analysis^a

sample	shell	CN ^b	<i>r</i> (Å) ^c	σ (Å) ^d
Fresh Pd/NiZn	Pd-O	5.16	2.01	0.0476
Recovered Pd/NiZn	Pd-O	5.14	2.01	0.0325

^a Inverse Fourier transformations were performed for the regions of 1.16-1.96 Å of the Pd/NiZn. ^{*b*} Coordination number. ^{*c*} Bond distance. ^{*d*} σ^2 is Debye-Waller factors.

Pd species in Pd/NiZn catalyst keeps its original structure even after catalytic reaction due to the strong interaction between anionic Pd(II) species and the layered host.

Reuse Experiment

The Pd/NiZn catalyst could be reused without any loss of its activity and selectivity!

Benzylalcohol Oxidation Under Various Conditions^a

	OH Pd catal	yst (Pd; 2 mol%)	
	PhCF air flov	3, 80 °C, 1 h v (10 mL/min)	
Entry	Catalyst	Convn (%) ^[b]	Yield (%) ^[b]
1	Pd/NiZn(0.2)	>99	97
2 ^[c]	Pd/NiZn(0.2)	>99	99
3 ^[d]	Pd/NiZn(0.2)	4	2
4	Pd/HT(0.2)	>99	>99
5	Pd/NiZn(10)	7	6
6 ^[e]	Pd/NiZn(0.2)	98	94
7 ^[f]	Pd/NiZn(0.2)	>99	94
8 [a]	NiZn	0	0
9	none	0	0

[a] Benzyl alcohol (0.5 mmol), Pd catalyst (Pd: 2 mol%), PhCF₃ (2.5 mL), 80 °C, 1 h, air flow (10 mL/min). HT, $Mg_6Al_2(OH)_{16}(CO_3)$, was purchased from Tomita Pharm. [b] Determined by GC analysis using an internal standard technique. [c] Under 1 atm of O₂. [d] Under 1 atm of N₂. [e] 1st recycle. [f] 2nd recycle. [g] NiZn (0.5 g) was used as a catalyst.

Pd/Hydrotalcite catalyst was changed into black color.

Pd/NiZn(0.02)

Pd/Hydrotalcite

sample	shell	CN ^b	<i>r</i> (Å) ^c	σ (Å) ^d
Fresh Pd/NiZn	Pd-O	4.41	2.02	0.054
Recovered Pd/NiZn	Pd-O	4.13	2.02	0.013

^a Inverse Fourier transformations were performed for the regions of 1.16-1.96 Å of the Pd/NiZn.
 ^b Coordination number. ^c Bond distance. ^d σ² is Debye-Waller factors.

This is the first demonstration of creating highly stable monomeric Pd species even in high Pd loading due to the strong interaction between anionic Pd(II) species and the layered host.

Alcohol Oxidation Under 1 atm of Air^a

^a Alcohol (0.5 mmol), Pd/NiZn (Pd: 2 mol%), TFT (2.5 mL), 80 °C, air flow (20 mL/min). ^b Determined by GC analysis using an internal standard technique. Wide range of alcohols were converted into the corresponding carbonyl compounds with Pd/NiZn catalyst under air atmosphere.

Rh/NiZn Catalyzed 1,4-Addition between Organoboron and Enones

Comparison Between Transmission and Fluorescence Mode - Rh K-edge XAFS for Rh/NiZn Catalyst -

Comparison Between Transmission and Fluorescence Mode - Rh K-edge XANES -

Comparison Between Transmission and Fluorescence Mode - k³-weighted Rh K-edge EXAFS Spectra -

Comparison Between Transmission and Fluorescence Mode - FT and Curve-fitting Analysis -

Curve-fitting Results

Mode	Shell	C.N. ^{<i>b</i>}	r (Å) ^c	σ (Å) ^d	
Trans	Rh-O	5.5	2.05	0.051	
Fluore	Rh-O	5.8	2.05	0.057	

 ^a Inverse Fourier transformations were performed for the regions of 1.26-2.03 Å of the Rh/NiZn.
 ^b Coordination number.

^c Bond distance.

 ${}^{d}\sigma$ is Debye-Waller factors.

Proposed Local Structure

